首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The presence of FMRF-amide, a cardioactiv tetrapeptide, was studied by immunocytochemistry in human and rat gastric antrum and pancreas, and in the ovine, bovine, canine and rabbit pancreas. In human and rat gastric antrum, numerous cells contained FMRF-amide immunoreactive material. By staining of serial sections and by double staining, colocalization of immunoreactivity for gastrin and FMRF-amide was observed in part of the gastrin cells. In the pancreas of these and the other species, immunoreactivity for FMRF-amide was located both in acinar and islet endocrine cells. Colocalization of FMRF-amide and pancreatic polypeptide was found in a proportion of pancreatic polypeptide cells in the pancreas. FMRF-amide immunoreactivity never colocalized with the other neurohormonal peptides which occur in the gastric antrum and the pancreas.Our observations show that neuroendocrine cells occur in the gastric antrum and pancreas which are exclusively immunoreactive or gastrin and for pancreatic polypeptide respectively. In addition cells occur which show immunoreactivity for FMRF-amide as well as for gastrin in the gastric antrum and with antiserum to FMRF-amide as well as for pancreatic polypeptide in the pancreas. It is concluded that FMRF-amide antibodies probably recognize a substance in G and PP cells which is not identical but may be structurally related to gastrin and pancreatic polypeptide.In honour of Prof. P. van Duijn  相似文献   

2.
Rabbit antisera were raised against a synthetic growth hormone releasing factor, which was originally isolated from a human pancreatic endocrine tumor (hpGRF-44). The antisera obtained showed no significant cross-reactivity with a variety of neurohormonal peptides. In addition to its occurrence in the human, but not in the rat, hypothalamus, hpGRF-44-like immunoreactivity was identified in human gastric antrum and human as well as rat pancreatic islets, using an indirect immunoperoxidase technique. Staining of serial sections and double staining revealed that in the gastric antrum the immunoreactivity was largely confined to gastrin (G) cells, whereas in pancreatic islets polypeptide (pp) cells were reactive. The physiological significance of these findings remains to be established.  相似文献   

3.
Summary Four monoclonal antibodies specific for somatostatin have been produced and characterized. These antibodies were used to assess the anatomical relationship of somatostatin-containing cells in the pancreas and gastrointestinal tract of man, baboon and rat with ten other peptide-containing endocrine cells. The peptides investigated were gastrin, cholecystokinin, motilin, secretin, neurotensin, gastric inhibitory polypeptide, gut-glucagon, pancreatic glucagon, pancreatic polypeptide and insulin.The only regions in which somatostatin cells were seen in close contact with another endocrine cell were in the pancreas and the gastric antrum. In the pancreas somatostatin cells were commonly seen in close contact with insulin, glucagon and pancreatic polypeptide cells and infrequent contact was demonstrable with the gastrin-immunoreactive cells in the antrum of both rat and man. In all other cases no evidence was obtained for a close anatomical relationship between somatostatin cells and the other enteroendocrine cells.  相似文献   

4.
Four monoclonal antibodies specific for somatostatin have been produced and characterized. These antibodies were used to assess the anatomical relationship of somatostatin-containing cells in the pancreas and gastrointestinal tract of man, baboon and rat with ten other peptide-containing endocrine cells. The peptides investigated were gastrin, cholecystokinin, motilin, secretin, neurotensin, gastric inhibitory polypeptide, gut-glucagon, pancreatic glucagon, pancreatic polypeptide and insulin. The only regions in which somatostatin cells were seen in close contact with another endocrine cell were in the pancreas and the gastric antrum. In the pancreas somatostatin cells were commonly seen in close contact with insulin, glucagon and pancreatic polypeptide cells and infrequent contact was demonstrable with the gastrin-immunoreactive cells in the antrum of both rat and man. In all other cases no evidence was obtained for a close anatomical relationship between somatostatin cells and the other enteroendocrine cells.  相似文献   

5.
Summary An immunohistochemical study for islet amyloid polypeptide (IAPP) was made on the gastrointestinal (GI) tract and pancreas of man and rat, using antisera raised against a synthetic peptide of C-terminal human IAPP (24–37) and a synthetic peptide of rat IAPP (18–37). A large number of IAPP-immunoreactive cells were found in the pyloric antrum, and a small number in the body of the stomach in both man and rat. Cytoplasmic processes extended out from the bipolar peripheral region of the immunoreactive cells, rather like neuronal processes, and some appeared to make contact with other immunoreactive cells. In addition, small numbers of immunoreactive cells were also seen in the duodenum and rectum, whereas they were absent from the jejunum, ileum and large intestine. An examination was made for evidence of colocalization of IAPP-immunoreactive material with material immunoreactive for gastrin, somatostatin, vasoactive intestinal polypeptide, pancreatic polypeptide, insulin, and glucagon, but none was found. IAPP-immunoreactive cells were also found in the pancreas of non-diabetic and non-insulin-dependent diabetic patients, but they were completely absent from a patient with insulin-dependent diabetes mellitus despite the presence of IAPP in the plasma. The results of these studies suggest that the peptide may have a biological role in situ in the GI tract and, in addition to the pancreas, may be a possible source of plasma IAPP.  相似文献   

6.
Gastrin, pancreatic polypeptide and somatostatin immunoreactive cells in the gut of two fish with stomachs (perch and catfish) and a stomachless fish (carp) were studied by immunocytochemistry. In the gastric mucosa of perch and catfish, cells showing gastrin and somatostatin-like immunoreactivity are found, scattered among the surface mucous cells and mucous neck cells. No pancreatic polypeptide (P.P.) immunoreactive cells are detected in the gastric mucosa. Cells showing gastrin and P.P.-like immunoreactivity are observed in the intestinal mucosa of perch, catfish and carp. In this location no somatostatin immunoreactive cells are found.  相似文献   

7.
I L Taylor  C R Vaillant 《Peptides》1983,4(2):245-253
A region-specific antiserum (AbS11) raised against the carboxyl-terminal hexapeptide of pancreatic polypeptide has been employed to measure rat pancreatic polypeptide specifically and to demonstrate apparent immunoreactivity in nerves and in endocrine cells outside the pancreas. The concentration of pancreatic polypeptide in the head of the rat pancreas measured with AbS11 (176 +/- 47 pmol/g) was 750 fold higher than that measured with a conventional anti-bPP antiserum (0.23 +/- 0.08 pmol/g). Column chromatographs of rat pancreatic extracts demonstrated two peaks of immunoreactivity both eluting after the porcine pancreatic polypeptide standard. AbS11 also detected specific immunoreactivity in rat brain (470 fmol/g) which went undetected in convention assays. Although immunohistochemical studies with AbS11 and human pancreatic polypeptide antiserum demonstrated immunoreactivity in the same population of pancreatic endocrine cells, immunoreactive nerve fibres and enteroglucagon cells were only demonstrable with AbS11. These studies demonstrate that the carboxyl terminus of rat pancreatic polypeptide is immunochemically similar to that of higher mammals. Furthermore, neural and extrapancreatic endocrine variants of this peptide share an immunochemical determinant contained within the carboxyl-terminal hexapeptide.  相似文献   

8.
Summary The pancreas from eleven species of snakes representing both advanced and primitive families has been investigated for the presence of eleven regulatory peptides reported to occur in the mammalian endocrine pancreas. Of the eleven peptides studied, insulin, pancreatic glucagon and somatostatin were present in endocrine cells within the islets of all the species investigated. The neuropeptide, vasoactive intestinal polypeptide, was located within nerve terminals innervating the islets in the Boidinae, Colubrinae, Elaphidae and Crotalidae but absent from the Natricinae investigated.No immunoreactivity was demonstrable with the antisera to substance P, met-enkephalin, C-terminal gastrin, bombesin, glicentin and gastric inhibitory polypeptide. Pancreatic polypeptide-like immunoreactivity was demonstrable only in the boid snakes and exclusively stained by a C-terminal specific antiserum.  相似文献   

9.
The microtubule-disrupting drug vincristine is a common component of anti-cancer chemotherapeutic regimes, which produces acute constipation as a side effect. Although generally attributed to damage to the myenteric plexus, the precise mechanism of this disturbance is unknown. In addition, vincristine causes marked aberrations in the secretory response of pancreatic endocrine tissue in both man and rats. No information is available on its possible effect on regulatory peptides of the gastrointestinal tract. In this study we have produced vincristine-induced constipation in rats at a dosage comparable with that employed in the treatment of human subjects. Immunocytochemistry revealed concomitant disturbances in cells exhibiting immunoreactivity for gastrin in the antrum, for gastric inhibitory polypeptide and 5-hydroxytryptamine in the duodenum, for enteroglucagon in the colon, and for somatostatin in all three sites. These widespread effects are transient in nature with normal cell numbers and morphology being reestablished within 6 days. It is suggested that the observed effects are a direct result of microtubule disruption and that gastrointestinal regulatory peptide and amine immunoreactive cells have a rapid regeneration potential.  相似文献   

10.
Summary The distribution of peptide hormone-like immunostaining in the gastrointestinal tract of 11 teleost species was investigated by immunofluorescence.Cells immunoreactive for somatostatin were found in the glandular epithelium of the stomach of four species and in the epithelium of the pyloric appendage of one species. The mid-gut epithelium contained cells reactive with antibodies to glucagon (three species), gastrin (five species), pancreatic polypeptide (five species), and substance P (two species). Cells immunoreactive for met-enkephalin were found in the epithelium of both the mid-gut and the stomach of six species.In six species in which the endocrine pancreas was investigated, insulin-, glucagon-, and somatostatin-like immunoreactivity was observed. Pancreatic polypeptide was definitely localised by immunostaining in cells of the endocrine pancreas of only one out of three species examined.Vasoactive intestinal polypeptide-, neurotensin-, bombesin-, and enkephalin-like immunoreactivity was identified in the gastrointestinal nerve fibres in various species.In view of the considerable species variation found, caution should be exercised in generalising about the peptides present in the gastrointestinal tract of fish.  相似文献   

11.
T C Wang  S J Brand 《The Yale journal of biology and medicine》1992,65(6):705-13; discussion 737-40
The gastrin gene is expressed in fetal pancreatic islet cells, but in the adult is expressed mainly in the gastric antrum. To study the regulation of the gastrin promoter, we created several transgenes containing the human and rat gastrin 5' flanking regions joined to the coding sequences of the human gastrin gene. The human gastrin transgene contained 1,300 bp of 5' flanking DNA, while the rat gastrin transgene contained 450 bp of 5' flanking DNA. The human gastrin transgene was expressed in fetal islets, but was not expressed in adult gastric antrum. In contrast, the rat gastrin transgene was expressed in adult antral G cells, but no expression was observed in fetal islets. To study the possible role of gastrin as an islet growth factor, a chimeric insulin-gastrin (INS-GAS) transgene was created, in which the expression of the human gastrin gene is driven from the rat insulin I promoter. These INS-GAS mice were mated with mice overexpressing TGF alpha, transcribed from a mouse metallothionein-transforming growth factor alpha (MT-TGF alpha) transgene. While overexpression of gastrin or TGF alpha alone had no effect on islet mass, overexpression of both transgenes resulted in a twofold increase in islet mass. In conclusion, these data indicate that (1) gastrin can interact synergistically with TGF alpha to stimulate islet growth; (2) the human gastrin transgene contains the islet specific enhancer; (3) the rat gastrin transgene contains the antral specific enhancer.  相似文献   

12.
Summary The aim of this study was to localize cells immunoreactive for glutamate decarboxylase (GAD), the enzyme of GABA synthesis, in pyloric and oxyntic regions of the rat stomach as well as in the rat and mouse pancreas. GAD immunocytochemistry was carried out on polyethylene glycol or cryostat sections of alkaline paraformaldehyde fixed tissue, with simultaneous immunolabelling of various gastro-pancreatic hormones for topographical comparison. In the rat stomach, nerve fibers displaying intense GAD-like immunoreactivity were seen in the myenteric plexus, the circular muscular layer, the submucosa and the lamina propria of the mucosa. But, they were absent from the submucous plexus. Colchicine treatment of the rats allowed to detect some labelled perikarya in the myenteric plexus suggesting that the GABAergic innervation is at least partly intrinsic to the stomach. In the oxyntic and pyloric mucosa, endocrine cells appeared immunostained for GAD. However, the nature of their hormones remained unknown since double immunodetections revealed that they were immunoreactive neither for gastrin nor for somatostatin. In the rat and mouse pancreas, GAD-like immunoreactivity was found in islet cells which corresponded only to insulin-secreting cells. Somatostatin-, glucagon- and pancreatic polypeptide-immunopositive cells were devoid of GAD immunolabelling. No GAD-like immunoreactivity was detected in the exocrine tissue and innervation. These results strenghten the hypothesis that GABA is not only a neurotransmitter in the stomach but that it could also be an endocrine or paracrine factor in the stomach and pancreas.  相似文献   

13.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

14.
Summary The occurrence of polypeptide YY- and neuropeptide Y-immunoreactive cells and nerves in the pancreas of some species from all the eight main vertebrate groups (cyclostomes, cartilaginous fish, bony fish, amphibia, reptiles, birds, and mammals) was investigated. In addition, an ontogenetic study of these neurohormonal peptides was performed, using the rat pancreas. The distribution of these two peptides was compared with that of the structurally closely related pancreatic polypeptide.Polypeptide YY-immunoreactive cells were found to occur in the endocrine pancreas and neuropeptide Y-immunoreactivity was observed both in neurons and nerve fibres. The polypeptide YY-immunoreactive cells were limited to mammals and reptiles only. Neuropeptide Y-immunoreactive neurons and nerves were observed in reptiles, birds, and mammals only. One reptilian species (out of three) and one mammalian (out of six) failed to show any kind of immunoreactivity for the polypeptide or neuropeptide. Pancreatic polypeptide-immunoreactive cells were found in all the species examined except in the hagfish islet.In rat foetuses, polypeptide YY-immunoreactive cells and neuropeptide Y-immunoreactive nerve elements were first demonstrated at the seventeenth day of gestation, whereas pancreactic peptide-immunoreactive cells did not appear until postnatally, namely in two day-old rats. The polypeptide-containing cells, a new cell type in the endocrine pancreas, are rare. In contrast to the pancreatic peptide cells, they do not seem to have any kind of regional distribution.  相似文献   

15.
Bioactive peptides have an important multifunctional role in the gastrointestinal tract. In the present study we have investigated the dynamism of the appearance of PACAP (pituitary adenylate cyclase activating polypeptide), VIP (vasoactive intestinal polypeptide), gastrin, and secretin immunoreactivities in human foregut derivates during the ontogenesis using an immunohistochemical approach. None of these peptides were observed in the foregut derivates of an 8-week-old embryo. VIP immunoreactive nerve fibers appeared by the 11th week in the smooth muscle layers of the stomach. No other peptide immunoreactivities were observed of this stage. In 18- and 20-week old fetuses PACAP, secretin, and gastrin immunoreactive cells appeared in the developing glands of the stomach. In the duodenum gastrin immunoreactivity was present in the Lieberkühn's glands and secretin immunoreactive cells were seen between the surface epithelial cells. In the pancreas secretin immunoreactivity was found in the Langerhans islets; however, PACAP immunreactivity was observed in the exocrine portion. The distribution of VIP fibers did not change during the fetal life and it was similar to the adult pattern. According to our results the appearance of PACAP, secretin, and gastrin in the developing glands suggests their role in the proliferation and differentiation of the epithelial derivates.  相似文献   

16.
 Colocalisation of synaptophysin has been studied in different neuroendocrine cell types in histologically normal mucosa from human gastrointestinal tract (corpus, antrum, duodenum, ileum and colon) using double-immunofluorescence stainings. Numerous synaptophysin immunoreactive cells were seen in the antrum, while a smaller number were found in the intestinal tract. Synaptophysin immunoreactivity was strong in the antrum but weak in the intestine. In the intestinal colocalisation studies the synaptophysin immunoreactivity was enhanced by using the tyramide amplification method. Synaptophysin and chromogranin A were colocalised but the latter occurred mainly basally, whereas synaptophysin was found to occur diffusely throughout the cytoplasm. Synaptophysin immunoreactivity occurred in the serotonin cells throughout the gastrointestinal tract, and in the antral gastrin and somatostatin cells. In the intestinal tract only a small fraction of somatostatin, gastrin, cholecystokinin, enteroglucagon, enteroglucagon/ peptide tyrosine tyrosine displayed synaptophysin immunoreactivity. In the gastrointestinal tract (except the antrum), chromogranin A is a better general neuroendocrine marker than synaptophysin. The functional role of synaptophysin is unclear but it may be involved in the intracellular transport and release of hormones. Based on the distribution background of synaptophysin, it seems to be of greater importance in the antrum than in the intestinal tract as a whole. Accepted: 3 September 1998  相似文献   

17.
Summary Endocrine-like cells containing glucagon, glicentin or pancreatic polypeptide immunoreactivity in human foetal and adult stomach, with or without disease, were studied with the indirect immunoperoxidase method and mirror sectioning technique. In foetal and neonatal oxyntic mucosae, there were endocrine-like cells with glucagon and glicentin immunoreactivities and argyrophilia. Cells containing glicentin immunoreactivity alone were detected earlier than glucagon cells during foetal development, and were also distributed throughout foetal to neonatal life. Bovine pancreatic polypeptide immunoreactivity coexisted in a subpopulation of the glucagon-glicentin cells. These cells were absent from normal oxyntic mucosa in the postneonatal period and from normal antral mucosa throughout life. Hamartomatous polyp in adult oxyntic mucosa, hyperplastic oxyntic mucosa in Menetrier's disease and atrophic oxyntic mucosa in a remnant stomach with cancer showed scattered glucagon-glicentin cells, but few or no cells containing bovine pancreatic polypeptide. Intestinalized mucosa showed plentiful glicentin cells with occasional glucagon and/or bovine pancreatic polypeptide immunoreactivity. Some gastric cancer cells of both diffuse and adenoplastic types contained immunoreactive glicentin and, less frequently, glucagon. Bovine pancreatic polypeptide immunoreactivity was detected in a few adenoplastic cancer cells, but not in diffuse type cells. Three different anti-pancreatic polypeptide sera against bovine, porcine or human pancreatic polypeptide detected basically the same cells mentioned above, but pancreatic polypeptide cells lacking human pancreatic polypeptide immunoreactivity were also present in foetal oxyntic mucosa. Immunoabsorption tests revealed that the bovine pancreatic polypeptide immunoreactivity was remote from peptide YY and neuropeptide Y.  相似文献   

18.
The aim of this study was to localize cells immunoreactive for glutamate decarboxylase (GAD), the enzyme of GABA synthesis, in pyloric and oxyntic regions of the rat stomach as well as in the rat and mouse pancreas. GAD immunocytochemistry was carried out on polyethylene glycol or cryostat sections of alkaline paraformaldehyde fixed tissue, with simultaneous immunolabelling of various gastro-pancreatic hormones for topographical comparison. In the rat stomach, nerve fibers displaying intense GAD-like immunoreactivity were seen in the myenteric plexus, the circular muscular layer, the submucosa and the lamina propria of the mucosa. But, they were absent from the submucous plexus. Colchicine treatment of the rats allowed to detect some labelled perikarya in the myenteric plexus suggesting that the GABAergic innervation is at least partly intrinsic to the stomach. In the oxyntic and pyloric mucosa, endocrine cells appeared immunostained for GAD. However, the nature of their hormones remained unknown since double immunodetections revealed that they were immunoreactive neither for gastrin nor for somatostatin. In the rat and mouse pancreas, GAD-like immunoreactivity was found in islet cells which corresponded only to insulin-secreting cells. Somatostatin-, glucagon- and pancreatic polypeptide-immunopositive cells were devoid of GAD immunolabelling. No GAD-like immunoreactivity was detected in the exocrine tissue and innervation. These results strenghten the hypothesis that GABA is not only a neurotransmitter in the stomach but that it could also be an endocrine or paracrine factor in the stomach and pancreas.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号