首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted at Belen de Escobar, Argentina, in March and April 1987. Experimental work on synchronization of estrus, deep-freeze conservation of ram semen and small fertility trials involving cervical and intrauterine (i.u.) insemination methods was undertaken. A total of 80 Corriedale ewes were used in seven insemination trials. Insemination trials were grouped into two experimental groups for comparison of 1) frozen semen diluted with an experimental extender and a control diluent inseminated cervically or i.u. in synchronized/superovulated ewes and 2) cervical insemination of fresh diluted or frozen semen in ewes inseminated at natural estrus or in ewes that were synchronized/superovulated. An overall ovulation rate of 8.7 +/- 0.5 was obtained by using a superovulatory regimen consisting of 3 mg Norgestomet implants and a total dose of 18 mg follicle stimulating hormone-pituitary (FSH-P). Numbers of ova recovered per ewe following superovulation ranged from 4.3 to 5.4. In experimental Group I, fertilization rates improved when laparoscopic intrauterine AI was used compared with cervical insemination (P<0.05). Fertility rates of i.u. and cervical insemination of frozen semen diluted with the experimental extender showed satisfactory fertilizing capacity. In experimental Group II, a lower number of fertilized ova were recovered from ewes inseminated with frozen semen (P<0.02), irrespective of their estrus manipulation.  相似文献   

2.
Ram spermatozoa are most susceptible to damage during freezing between the temperatures of -10 degrees C and -25 degrees C. The objectives of the present study were to examine how freezing rate through this critical temperature zone affected the fertility of spermatozoa as assessed in vivo and in vitro. Semen from six adult rams was frozen at two different rates ("fast": 5 degrees C/min from +5 to -25 degrees C; "slow": 0.5 degrees C/min from +5 to -25 degrees C). In Experiment 1, semen from the fast and slow treatments was used to fertilize ovine oocytes that had been matured in vitro. Semen from the fast treatment yielded a higher cleavage rate (57% vs. 26%; P<0.001) and more blastocysts per oocyte (28% vs. 13%, P<0. 001) than slow-frozen. No correlation was found between fertilizing ability and viability as assessed by fluorescent probes. Experiment 2 was designed to establish the conception rates following both cervical and intrauterine insemination of frozen-thawed semen from the same bank of semen as used in Experiment 1. Ewes were superovulated with FSH and inseminated by laparoscopy with frozen semen. A significant difference was found in the number of fertilized ova following embryo recovery (81.4% vs. 39.3%; P<0.001). In a further study, 119 mature cull ewes were inseminated following a 12-day synchronization treatment with frozen semen by either intrauterine (laparoscopic) or cervical insemination. Insemination with fast-frozen semen resulted in a significantly higher pregnancy rate (P<0.05) irrespective of method of insemination. The data show that freezing rate affects the proportion of spermatozoa that retain their fertilizing ability post-thawing. However, once fertilization has occurred, development to the blastocyst stage is independent of freezing rate.  相似文献   

3.
In Exp. 1, 40 ewes were used in a 2 x 2 factorial design to investigate the effects of intrauterine versus cervical insemination and superovulation using pig FSH or PMSG and GnRH on egg recovery and fertilization rate. Cervical inseminations were carried out at 48 and 60 h (N = 20 ewes) and intrauterine insemination at 52 h (N = 20 ewes) after progestagen pessary withdrawal. Eggs were recovered on Day 3 of the oestrous cycle. Ovulation, egg recovery and fertilization rates were independent of the type of superovulatory hormone used. Fertilization rate was high irrespective of insemination site but intrauterine insemination at 52 h was associated with a significant (P less than 0.01) decrease in egg recovery of over 40% compared with cervically inseminated ewes. In Exp. 2 ewes were inseminated at 36 (N = 5), 48 (N = 6) or 60 (N = 6) h after pessary withdrawal to determine the optimum intrauterine insemination time to maximize both fertilization rate and egg recovery. Egg recovery per ewe flushed was 23, 59 and 67% after intrauterine insemination at 36, 48 and 60 h respectively. Correspondingly, 0, 85 and 100% of the eggs recovered were fertilized. The results of Exps 1 and 2 suggest that when intrauterine insemination occurs before or during ovulation it interferes with oocyte collection by the fimbria. In Exp. 3 egg recovery and fertilization rates were determined after cervical insemination at 48 and 60 h (N = 8) or intrauterine insemination at 48 (N = 9) or 60 (N = 8) h after progestagen withdrawal. Ewes in the last two groups were subdivided and inseminated unilaterally or bilaterally. Egg recovery was high after cervical insemination (95%) but only 36% of these eggs were fertilized. Unilateral intrauterine insemination was as effective as bilateral in ensuring high fertilization rates (100 versus 97%). Intrauterine insemination at 48 h compared with 60 h resulted in a significantly lower (P less than 0.05) percentage of eggs recovered (42 versus 90% respectively). However, reducing the degree of interference by adopting unilateral rather than bilateral insemination did not alleviate the detrimental effects of the 48-h insemination time on egg recovery. From these results we advocate the adoption of intrauterine insemination at 60 h after progestagen withdrawal to maximize fertilization rate and egg recovery in superovulated ewes.  相似文献   

4.
The objectives were to compare embryo development rates after oocyte transfer with: (1) intrauterine or intraoviductal inseminations of fresh semen versus intraoviductal insemination of frozen semen; (2) intraoviductal versus intrauterine inseminations of cooled semen. In Experiment I, oocytes were transferred into the oviduct, and recipients were inseminated into the uterus with 1 x 10(9) fresh spermatozoa, or into the oviduct with 2 x 10(5) fresh or frozen-thawed spermatozoa. In Experiment II, semen was cooled to 5 degrees C before intrauterine insemination with 2 x 10(9) spermatozoa or intraoviductal inseminations of 2 x 10(5) spermatozoa (deposited with the oocytes). In Experiment I, embryo development rates were similar (P>0.05) for intrauterine versus intraoviductal inseminations when fresh semen was used (8/14, 57% and 9/11, 82%, respectively). However, embryo development rates were lower (P<0.05) when frozen spermatozoa were placed within the oviduct (1/12, 8%). In Experiment II, embryo development rates were higher (P<0.05) when cooled semen was used for intrauterine (19/23, 83%) versus intraoviductal (4/16, 25%) inseminations. We concluded that intraoviductal insemination can be successfully performed using fresh spermatozoa. However, the use of cooled and frozen spermatozoa for intraoviductal inseminations was less successful, and needs further investigation.  相似文献   

5.
We compared conventional methods for laparoscopic and cervical artificial insemination (AI) to a transcervical AI procedure (Guelph System for Transcervical AI; GST-AI) for use with frozen semen in Merino ewes. The GST-AI procedure was performed by an experienced operator in Experiment 1 (771 ewes) and by 2 inexperienced operators in Experiment 2 (555 ewes). In Experiment 1, intrauterine insemination by GST-AI was achieved in 76% of the ewes. The pregnancy rate at Day 70 for ewes inseminated by laparoscopy (48%, 120 251 ) was higher (P<0.01) than for ewes inseminated by either intrauterine GST-AI (32%, 64 201 ) or cervical AI (9%, 24 256 ). The overall (intrauterine and intracervical) pregnancy rate for GST-AI was 26% (68 264 ) and was unaffected by depth of insemination within the cervix. Pregnancy rates were unaffected by ram or day of insemination. In Experiment 2, the operators achieved intrauterine inseminations by GST-AI in 43% (78 182 ) of the ewes, with a significant operator effect (P<0.01) on depth of cervical penetration. The pregnancy rate to intrauterine GST-AI (40%, 31 78 ) did not differ from that to laparoscopic insemination. The total pregnancy rate for GST-AI in Experiment 2 (19%, 34 182 ) was lower (P<0.05) than that for laparoscopic AI (39%, 72 187 ) but superior (P<0.05) to that for cervical AI (1%, 1 186 ). The GST-AI pregnancy rates were affected by depth of AI (P<0.01) and by operator (P<0.05). It is concluded that GST-AI is superior to cervical AI, and may have application in Merinos if cervical penetration rates can be improved.  相似文献   

6.
In three experiments, the onset of oestrus, time of ovulation and lambing after intrauterine insemination with frozen-thawed semen were examined following synchronisation of oestrus using intravaginal progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG at sponge removal.

The number (and percentage) of ewes detected in oestrus 12, 24, 36, 48, 60 and 72 h after sponge removal was 1 (0.3), 2 (0.6), 17 (5.2), 120 (36.7), 65 (20.0) and 10 (3.1) respectively. One hundred and twelve ewes (34.3%) remained unmarked. Egg fertilisation rates were not different between ewes irrespective of time of onset of oestrus or whether or not ewes were marked.

The median time of ovulation with respect to sponge removal (with 95% fiducial limits) for ewes joined with vasectomised rams (10:1) at spronge removal (teased ewes) was 55.8 h (54.61–57.09) and for unteased ewes 59.7 h (58.27–61.12).

In the third experiment, a total of 394 ewes were inseminated by laparoscopy with frozen-thawed semen. The percentage of ewes lambing and lambs born per ewe inseminated, and number of lambs born per ewe lambing for inseminations 48, 60, 72 and 78 h after sponge removal were 45.9, 57.7 and 1.25; 55.1, 72.0 and 1.31; 57.4, 80.9 and 1.41; and 39.3, 60.7 and 1.54, and for 59 control ewes receiving fresh semen by cervical insemination 47.5, 69.5 and 1.46 respectively. The lambing data after insemination with frozen semen was not different to that of the controls. The percentage of ewes lambing and lambs born per ewe inseminated increased with time of insemination at 48, 60 and 72 h (linear, P < 0.01) but was lower for inseminations at 78 h after sponge removal. Number of lambs born per ewe lambing increased with time of insemination after sponge removal (linear, P < 0.05).  相似文献   


7.
Artificial insemination (AI) in sheep is currently limited by the poor fertility obtained following non-surgical intracervical insemination of frozen-thawed semen. An exception to this general finding is the non-return rate of around 58% reported for large scale on-farm AI in Norway. The objective of the present study was to determine if similar results could be obtained under Irish conditions. Comparisons were made between semen collected, and frozen, from rams in Norway (NOR) and Ireland (IRL). The effects of synchronisation and inseminator were also examined. Parous ewes (n=297) of various breed types were inseminated to a natural (N) or synchronised (S) oestrus with either fresh (from Irish rams) or frozen-thawed (IRL and NOR) semen. Ewes were randomly assigned, within breed, to the following treatment groups: (i) Fresh-N: n=28, (ii) Fresh-S: n=30, (iii) IRL-N: n=62, (iv) IRL-S: n=50, (v) NOR-N: n=68, (vi) NOR-S: n=59. Within each group, ewes were inseminated by an experienced Norwegian or by an Irish inseminator. Pregnancy rate did not differ significantly between ewes inseminated to a natural or synchronised oestrus nor between Norwegian and Irish frozen semen. The proportion of ewes pregnant after insemination with fresh semen was 0.82 and 0.70 (treatments i and ii) compared with 0.40, 0.52, 0.34 and 0.37 (treatments (iii)-(vi)) for frozen semen (P<0.001). Corresponding litter sizes (+/-S.E.), adjusted for ovulation rate, were 2.9+/-0.22, 3.3+/-0.23, 2.2+/-0.21, 1.7+/-0.21, 2.2+/-0.21 and 2.1+/-0.21 (fresh versus frozen; P<0.001). There was an interaction between semen type (fresh or frozen) and oestrus type (N or S) for litter size due to an increased adverse effect of frozen semen on litter size in synchronised ewes (P<0.05). Pregnancy rate was significantly influenced by breed of ewe (P<0.01) and inseminator (P<0.05). These results suggest that ewe breed may be a critical determinant of the potential for the exploitation of cervical insemination of frozen-thawed semen in sheep breeding programmes.  相似文献   

8.
Gonadotropin releasing hormone (GnRH) treatment was examined as a means of improving the efficacy of embryo collection in the sheep following intrauterine insemination of frozen-thawed semen. In summary, treatment consistently improved fertilization rates and the number of fertilized ova collected per ewe was enhanced compared with untreated ewes. The yield of fertilized ova in ewes treated with follicle stimulating hormone (FSH) was maximized by administering GnRH 36 h after progestagen treatment; 24 h was the preferred time in ewes treated with pregnant mare serum gonadotropin (PMSG). There was a significant (P < 0.001) increase in the percentage of unfertilized ova in the former treatment when GnRH was given at 24 h. An examination of the time of insemination (0, 6, 12 and 18 h before the median time of ovulation) indicated that fertilization rates were highest when insemination occurred at 6 h in both GnRH-treated ewes and in untreated ewes. In GnRH-treated ewes, the recovery of ova was lowest when insemination occurred at the time of ovulation. The number of motile frozen-thawed spermatozoa required for fertilization following treatment was estimated to be approximately 20 x 10(6) per uterine horn. GnRH-treatment also improved the yield of fertilized ova in sheep that were naturally mated, although this yield was lower than that obtained with intrauterine insemination of frozen-thawed semen. It is concluded that fertilization failure, a major problem in sheep embryo collection, can be eliminated through judicious use of GnRH treatment and properly timed intrauterine insemination.  相似文献   

9.
The objective of this study was to investigate the inflammatory reaction induced in the equine uterus by insemination with fresh and frozen semen. Eleven groups (6 to 8 mares per group) were studied during 2 breeding seasons. The mares were inseminated using raw semen, frozen semen, extended fresh and frozen semen, concentrated fresh semen, seminal plasma and seminal extenders only. One group was bred naturally. Six hours after insemination, the uteri were flushed with 50 ml of phosphate-buffered saline (PBS). Seventeen out of 104 samples (16%) exhibited slight bacterial growth. Neutrophil concentrations were significantly (P < 0.05) higher in all treated mares than in the controls. Mares infused with PBS, seminal extenders or the supernatant from centrifuged frozen-thawed semen exhibited only a mild neutrophil response. Insemination with frozen semen resulted in higher neutrophil concentrations than insemination with extended fresh semen (means of 59 vs 5 million neutrophils/ml; P < 0.05). Highest neutrophil counts were found after insemination with frozen semen or concentrated fresh semen. Bacterial contamination of uteri was insignificant 6 hours after breeding. Neutrophilia seems to be induced by spermatozoa rather than bacteria. The intensity of the neutrophil reaction seems to depend on concentration and/or volume of inseminate.  相似文献   

10.
The widespread use of artificial insemination (AI) in sheep is currently prevented due to the lack of a cost effective insemination technique utilising frozen-thawed semen. The objective of the present study was to determine if the deposition of frozen-thawed semen in the vaginal fornix would result in a pregnancy rate comparable to that achieved following cervical insemination. Multiparous ewes of various breeds were synchronised and inseminated into either the vaginal fornix (n=78) or the cervix (n=79), at 57 h post sponge removal, with frozen-thawed semen. Information on mucus secretion and the depth to which it was possible to penetrate the cervix at insemination (cervically inseminated ewes only) was recorded at the time of AI. Pregnancy rate was subsequently determined either by return to service (oestrus) or after slaughter 30 days post insemination. Insemination site did not significantly influence pregnancy rate using frozen-thawed semen (36.2% compared to 27.6% for cervical and vaginal fornix insemination, respectively; P=0.26). Whilst depth of cervical penetration was positively associated with pregnancy rate (P<0.05), this association needs to be interpreted with caution as none of the ewes where the cervix could not be penetrated (score=0) was pregnant. In conclusion, pregnancy rate following insemination of frozen-thawed semen into the vaginal fornix was within 10% points of that obtained following cervical AI of frozen-thawed semen. As insemination into the vaginal fornix is technically easier than cervical insemination, it may be more practical for use in large scale applications.  相似文献   

11.
The results of laparoscopic insemination of 28,447 Australian Merino ewes with semen from 468 rams were used to study factors influencing pregnancy. The overall pregnancy rate was 71.7% (20,423/28,447). Pregnancy rates varied with type of progestagen implant, type and dosage of PMSG, fresh or frozen semen, wool type and number of ewes inseminated per hour. The pregnancy rate (64.6%) obtained with Medroxy-progesterone acetate (MAP) sponges, was significantly (P < 0.01) lower than with Fluorogestone acetate 30 mg (FGA 30; 74.7%) sponges, Fluorogestone acetate 40 mg (FGA 40; 72.1%) sponges, and Controlled Internal Drug Release (CIDR-G; 71.7%) implants. A PMSG dose of 200 IU resulted in significantly (P < 0.05) lower pregnancy rates (62.4%) compared with 250 IU (72.9%), 300 IU (79.1%) and > or = 375 IU (69.4%). The mean pregnancy rate for ewes administered Folligon PMSG was 71.9%, which was significantly higher (P < 0.001) than that of ewes treated with Pregnecol PMSG (65.8%). The use of Pregnecol PMSG and MAP sponges was associated, and thus their conditional effects could not be calculated. Ewes inseminated with fresh semen were significantly (P < 0.001) more likely to become pregnant (82.2%) than those inseminated with semen frozen in pellets (69.5%) or straws (71.6%). Ewes inseminated during the months of March, April or May (fall, 71.5%) were just as likely to become pregnant as those ewes inseminated in November, December, January or February (69.6%). Significantly (P < 0.05) fewer strong wool ewes become pregnant to laparoscopic AI, (67.6%) than fine (71.7%), fine medium (73%) or medium wool ewes. Significantly (P < 0.0001) more pregnancies (77.6%) were achieved when more than 55 ewes were inseminated per hour compared with fewer than 35 ewes per hour (63.4%).  相似文献   

12.
Sayre BL  Lewis GS 《Theriogenology》1997,48(2):267-275
Based on our previous work, we found that exogenous oxytocin induces uterine tetany and cervical dilation, and permits transcervical access to the uterus. However, the oxytocin does not reduce sustained sperm transport from the uterus to the oviducts. Thus, we hypothesized that exogenous oxytocin may be a useful adjunct to transcervical intrauterine AI procedures for sheep: two experiments were conducted to test our hypothesis. In Experiment 1, purebred ewes (n = 75/group) were artificially inseminated intrauterine with either laparoscopic or oxytocin-transcervical (i.e., 200 USP units of oxytocin 30 min before AI) procedures. At 54 h after progestogenated pessaries were removed, ewes were inseminated with 200 x 10(6) sperm/0.25 ml of fresh, extended semen, which was collected from a purebred ram of the corresponding breed. Pregnancy rate was greater (P < 0.05) after laparoscopic (37.5%) than after transcervical AI (0%). Because of the disappointing results of Experiment 1, Experiment 2 was conducted to determine whether oxytocin or the AI procedure per se reduced ovum fertilization rate. Treatments were designed in a 2 x 2 factorial arrangement. At 60 h after norgestomet implant removal and 10 min before either laparoscopic or transcervical (cervical in a saline group) AI with 100 x 10(6) sperm/0.25 ml, ewes (n = 10/group) received an intravenous injection of either isotonic saline or 200 USP units of oxytocin. Fertilization rate, which was determined 72 h after AI, was greater (P < 0.05) after laparoscopic than after transcervical/cervical AI (92.5 vs 28%), but oxytocin treatment did not affect fertilization rate. The results indicate that exogenous oxytocin did not reduce ovum fertilization rate, but the transcervical AI procedure per se seemed to reduce fertilization rate.  相似文献   

13.
Adult Merino ewes (n=448) were apportioned into two groups and inseminated with: extended at 30 degrees C with skim milk and stored for 6h at 15 degrees C (cooled semen) or extended with skim milk-citrate trisodium with egg yolk and stored for 24h at 5 degrees C (chilled semen). Each group was further subdivided according to the time of cervical insemination at 42, 46 and 50h after pessary (MAP-60 mg) removal and according to the dilution of the semen (120 x 10(6) spermatozoa in 0.05, 0.1 and 0.2 ml). The pregnancy rate after insemination with cooled semen was 50% better than that after chilled semen (56.7 vs. 37.5%; P<0.001). Pregnancy rate was not affected by the volume of insemination; however, there was a tendency of increased lambing rate with an insemination dose of 0.1 cc (1:2, dilution), especially when the ewes were inseminated with cooled semen. The effect of time on insemination was significant only in ewes inseminated with chilled semen at 5 degrees C (P<0.01). Insemination carried out 46 h after pessary removal resulted in higher pregnancy and lambing rate (36.5, 31.1; 52.0, 45.3; and 24.0, 20.0 at 42, 46 and 50h, respectively). Pregnancy of ewes inseminated with chilled semen at 46 h after pessary removal was similar to that obtained using cooled semen (52.0 vs. 56.7%). From this study, it is concluded that advancing the time of insemination with chilled semen at 5 degrees C improves pregnancy and that the lambing obtained under these conditions is similar to the one obtained with cooled semen.  相似文献   

14.
Three experiments were conducted with 105 superovulating Holstein dairy cows in attempts to improve the fertilization rate. Cows were superovulated with follicle-stimulating hormone (FSH) and time of estrus was regulated with prostaglandin F(2)alpha (PGF(2)alpha). Semen was deposited on each infundibulum through a laparoscope inserted through the flank (Experiment 1) or near the uterotubal junctions through flexible tubing passed through the cervix and uterine horns (Experiment 2). In the third experiment, high numbers of sperm in fresh semen were deposited in the uterus. Cows were necropsied and ova were recovered and examined about 3.5 d after the beginning of estrus. Deposition of 0.5 ml of frozen-thawed semen on each infundibulum (Experiment 1) reduced both ovum recovery and fertilization. In ten cows inseminated on the infundibulum, ova representing 43% of ovulation points were recovered and 9% of these recovered ova were fertilized. In ten control cows, ova representing 80% of ovulation points were recovered and 62% of them were fertilized. In a 2 x 2 experiment with 36 superovulating cows (Experiment 2), 1 ml of diluted fresh or frozen semen was deposited either near the uterotubal junction or in the uterine body. The overall fertilization rate was 61%, with no significant effect of site of semen deposition or type of semen used. In Experiment 3, 2 or 3 ml of neat semen (average of 4.4 billion sperm) was deposited in the uterus of 12 cows; 183 of 197 intact ova (93%) were fertilized. In 56 control cows inseminated with 0.5 to 1.5 ml of frozen diluted semen (average of 70 million sperm), 502 of 947 intact ova were fertilized (53%, P<0.001). Insemination with high numbers of fresh sperm overcame problems of sperm loss or sperm transport and improved the fertilization rate.  相似文献   

15.
《Theriogenology》1986,26(6):709-719
Superovulated Jersey and Holstein heifers and cows were bred 9.7 ± 2.7 h after the first observation of estrus with a single dose of frozen semen. Animals were grouped by site of insemination: 1) right uterine horn (n = 5), 2) left uterine horn (n = 4), 3) mid- uterine body (n = 5), and 4) mid-cervix (n = 6). The number of unfertilized ova, normal and abnormal embryos were recorded for each horn at slaughter 115.8 ± 18.6 h after insemination. All viable embryos were cultured in vitro and assessed for development. The overall fertilization rate was 76.8%, with the ipsilateral horn being higher than that of the contralateral horn (P < 0.05). Similar fertilization rates resulted among all treatments except those inseminated in the contralateral horn (P < 0.05). In vivo development of embryos was higher for the ipsilateral horn inseminations than those of the body of the uterus or cervical inseminations (P < 0.05), but it was not higher than the contralateral horn inseminations (P > 0.05). Under the conditions of this study with superovulated cows, these results suggest than 1) spermatozoa migrate from one horn to the other and 2) inseminating too deep into one horn may reduce the chances for concention when ovulation occurs contralaterally.  相似文献   

16.
The objective of the present study was to increase the efficiency in the production of ovine zygotes suitable for microinjection via laparoscopical intrauterine insemination. In the first part of the study, 71 ewes of three different breeds were inseminated with one of two different insemination doses (50 x 10(6) or 300 x 10(6) sperm per inseminate) and semen was either freshly diluted, liquid conserved, or frozen/thawed, or females were mated by a fertile ram (controls). In the second part, a total of 46 ewes was inseminated with 300 x 10(6) freshly diluted sperm to verify the findings from part 1 and to unravel effects of breed and age of donor ewe. The oviducts were flushed 24-26 h after insemination and the success of insemination was assessed by microscopical examination. Recovery rates were 78.0+/-26.4 and 72.1+/-24.6% in parts 1 and 2 of the study, respectively. Of these oocytes 62.3 and 62.8% (parts 1 and 2, respectively) were fertilized. In part 1, the highest proportion (64.7%) of pronuclear stages was observed in the group inseminated with 300 x 10(6) freshly diluted semen and was significantly higher compared to the groups inseminated with 50 x 10(6) freshly diluted semen (25.5%, P<0.001), 300 x 10(6) liquid conserved semen (49.0%, P<0.001), or 50 x 10(6) frozen/thawed semen (39.6%, P<0.05). In the control group, the proportion of pronuclear stages amounted to 60.2%. Irrespective of the type of sperm conservation, the overall fertilization rate (zygotes plus 2-cell stages) was higher (P<0.05) following insemination with 300 x 10(6) sperm (68.2%) compared to 50 x 10(6) sperm (56.8%). In part 2, the proportion of pronuclear stages reached 54.2% with an overall fertilization rate of 62.9%. These results were affected by breed and age of the donor as crossbred and younger (<3 years) animals yielded the highest proportion of pronuclear stages. The present study shows that freshly diluted semen at a dosage of 300 x 10(6) sperm yields the highest fertilization rates, the greatest proportion of pronuclear stages and the lowest proportion of mature unfertilized oocytes. Further increases in yields of pronuclear stages can possibly be achieved by selection of sheep from the best suited breed and younger than 3 years of age.  相似文献   

17.
The objective was to compare the reproductive performance of a new PGF-based timed artificial insemination (TAI) protocol in sheep (Synchrovine®: two doses of PGF, 7 d apart) to a traditional progesterone-eCG (P4-eCG) protocol, considering the effects of seminal state, AI-times, and AI-pathway. Three experiments involving 1297 multiparous Australian Merino ewes were done during the physiologic breeding season (location 32 °S-57 °W). Reproductive performance was assessed as non-return rate to service 21 d after AI (NRR21d), based on detection with androgenized wethers, as well as Fertility (pregnant/inseminated ewes), Prolificacy (fetuses/pregnant ewe), and Fecundity (fetuses/inseminated ewe), which were based on transabdominal ultrasonography 50 d after TAI. In Experiment 1, Synchrovine® treated ewes TAI cervically with fresh semen at 42, 48, or 54 h had similar NRR21d (0.51, 0.46, 0.57), Fertility (0.27, 0.31, 0.26), and Fecundity (0.29, 0.32, 0.27), all of which were lower (P < 0.05) than in a control P4-eCG group inseminated at 54 h (0.61, 0.48, 0.52, NRR21d, Fertility and Fecundity respectively). In Experiment 2, using chilled semen and cervical TAI, Synchrovine® treated ewes inseminated at 42 h yielded lower (P < 0.05) NRR21d, Fertility and Fecundity (0.28, 0.06, 0.06) compared to 48 (0.43, 0.24, 0.24) and 54 h (0.44, 0.22, 0.23). In Experiment 3 with chilled semen, Synchrovine® treated ewes TAI into the cervix at 51 or 57 h were similar in NRR21d (0.16 vs 0.20), Fertility (0.12 vs 0.14), and Fecundity (0.12 vs 0.15), respectively; but lower (P < 0.05) than P4-eCG treated ewes TAI at 54 h (0.34, 0.28, and 0.33 for NRR21d, Fertility and Fecundity respectively). Synchrovine® treated ewes intrauterine TAI at 51 or 57 h yielded similar NRR21d (0.51 vs 0.58), Fertility (0.43 vs 0.51), and Fecundity (0.45 vs 0.56) respectively, but lower (P < 0.05) results compared to P4-eCG treated ewes (0.75, 0.71, and 0.88 for NRR21d, Fertility and Fecundity respectively). In conclusion, AI-time in Synchrovine® treated ewes with fresh semen might be extended (42 to 54 h after the second PGF), but should be delayed to 48-54 h with chilled semen and cervical AI. Independent of the seminal state, AI-time or AI-pathway, Synchrovine® yielded lower reproductive results than a conventional P4-eCG protocol.  相似文献   

18.
Tsutsui T 《Theriogenology》2006,66(1):122-125
Artificial insemination (AI) in cats represents an important technique for increasing the contribution of genetically valuable individuals in specific populations, whether they be highly pedigreed purebred cats, medically important laboratory cats or endangered non-domestic cats. Semen is collected using electrical stimulation, with an artificial vagina or from intact or excised cauda epididymis. Sperm samples can be used for AI immediately after collection, after temporary storage above 0 degrees C or after cryopreservation. There have been three and five reports on intravaginal and intrauterine insemination, respectively, and one report on tubal insemination with fresh semen. In studies using fresh semen, it was reported that conception rates of 50% or higher were obtained by intravaginal insemination with 10-50x10(6) spermatozoa, while, in another report, the conception rate was 78% after AI with 80x10(6) spermatozoa. After intrauterine insemination, conception rates following deposition of 6.2x10(6) and 8x10(6) spermatozoa were reported to be 50 and 80%, respectively. With tubal insemination, the conception rate was 43% when 4x10(6) spermatozoa were used, showing that the number of spermatozoa required to obtain a satisfactory conception rate was similar to that of cats inseminated directly into the uterus. When frozen semen was used for intravaginal insemination the conception rate was rather low, but intrauterine insemination with 50x10(6) frozen/thawed spermatozoa resulted in a conception rate of 57%. Furthermore, in one report, conception was obtained by intrauterine insemination of frozen epididymal spermatozoa. Overall, there have been few reports on artificial insemination in cats. The results obtained to date show considerable variation, both within and among laboratories depending upon the type and number of spermatozoa used and the site of sperm deposition. Undoubtedly, future studies will identify the major factors required to consistently obtain reliable conception rates, so that AI can become a practical technique for enhancing the production of desirable genotypes, both for laboratory and conservation purposes.  相似文献   

19.
Some reports indicate that sperm from different males differ in capacitation time, and other reports suggest that freezing sperm may affect their capacitation time. These two variables were specifically studied in rabbits in a fertility trial with 96 does inseminated with approximately 1.6 million motile fresh or frozen sperm from three different bucks at 15, 10, 5, and 0 h before expected ovulation. Fresh semen averaged 84% live (unstained) sperm and 88% had normal acrosomes; corresponding values for frozen sperm were 44% and 54%. On the basis of does that became pregnant, average litter size with fresh semen was 5.5 and with frozen semen was 4.8 (p greater than 0.05), but overall, does bred with frozen semen produced fewer young (p less than 0.05). On the basis of total does and total semen, average litter size from insemination at 15, 10, 5, and 0 h was 2.8, 4.2, 3.8, and 1.7, and average litter size for the three bucks was 4.0, 1.8, and 3.6. There was no interaction of type of semen (fresh or frozen) with the other variables in the model (p greater than 0.05). Bucks and time of insemination affected both the proportion of does that were pregnant and litter size (p less than 0.01). A major interaction between buck and time of insemination (p less than 0.01) was due apparently to both differential sperm survival and probable capacitation time among bucks. This major interaction should be considered in designing in vitro and in vivo fertility studies, and for selecting males for use in artificial insemination.  相似文献   

20.
In this paper, the conditions necessary to use TEPA [tris (1-aziridinyl)] effectively as a label for spermatozoa in competitive fertilization are established. The fertilizing ability of rabbit spermatozoa treated with 0 and 0.8 mg TEPA/ml was compared at insemination doses of 1, 5, 20, and 40 × 106 spermatozoa. Fertility was assessed by collecting ova from 64 does 48 to 52 h after insemination. TEPA blocked all but 4% of the ova from developing when 1 × 106 spermatozoa were inseminated, but fertility was reduced. When 5 × 106 spermatozoa were inseminated following treatment with 0, 0.6 or 1.2 mg of TEPA/ml, the fertility was 83, 74 and 50% (P<0.05), and the percentage of ova containing more than four blastomeres was 83, 11 and 5% (P<0.05), respectively. The 0.6% TEPA level was selected for a competitive fertilization trial. Equal numbers of sperm from pure Dutch-color and albino sires were combined so that either both types were untreated, only the ‘albino’ semen was treated, only the ‘Dutch’ semen was treated, or both were treated. Does were inseminated with 5 × 106 sperm and allowed to kindle. The litter sizes were 5.6, 3.1, 2.7, and 0 young, and the proportion of Dutch-color progeny was 63, 97, 0 and 0%, respectively, confirming the effectiveness of TEPA as a “label”. Only one of 60 young born resulted from fertilization by a TEPA-treated spermatozoon, demonstrating that few embryos fully escape the TEPA block. Thus, the TEPA concentration and sperm numbers were established to use TEPA effectively as a label for spermatozoa in competitive fertilization studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号