首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Baroin  A Prat    F Caron 《Nucleic acids research》1987,15(4):1717-1728
In Paramecium primaurelia, the macronuclear gene encoding the G surface protein is located near a telomere. In this study, multiple copies of this telomere have been isolated and the subtelomeric and telomeric regions of some of them have been sequenced. The telomeric sequences consist of tandem repeats of the hexanucleotides C4A2 or C3A3. We show that the location where these repeats are added, which we call the telomeric site, is variable within a 0.6-0.8-kb region. These results are discussed in relation with the formation of macronuclear DNA.  相似文献   

2.
To investigate the developmentally programmed telomere addition that accompanies chromosome fragmentation during macronuclear differentiation in Tetrahymena thermophila, five representative telomeric regions from the macronucleus were cloned and characterized in detail. The sequences adjacent to the telomeric (C4A2:T2G4) repeats on these five macronuclear ends had no significant sequence homology or shared secondary structure. Two developmentally independent examples of one macronuclear telomere had a 5 base pair difference in the position of the junction between the telomeric repeats and the adjacent sequences. A telomere-adjacent sequence, in the form of a synthetic oligonucleotide, was unable to prime the addition of telomeric repeats in vitro. The implications of these results for the mechanisms underlying developmentally programmed chromosome fragmentation and telomere addition in Tetrahymena are discussed.  相似文献   

3.
Mutation of the telomeric repeat sequence has severe cellular consequences in a variety of systems. A Tetrahymena thermophila telomerase template mutant, ter1-43AA, displays an acute mitotic chromosome segregation defect. In the study described here we investigated the molecular basis for this lethality. Although cloned ter1-43AA macronuclear telomeres had long tracts of wild-type G4T2 repeats, they were capped by a mixture of G4T3 repeats, shown previously to be non-lethal, and G4T4 repeats, the telomeric sequence normally found in hypotrichous ciliates such as Oxytricha. To test further the functionality of the G4T4 repeat sequence in T. thermophila, we devised a new template mutation, ter1-44+AA, that resulted in more uniform synthesis of this sequence at telomere caps in vivo. The ter1-44+AA mutant displayed the most severe mitotic defect reported to date, with up to 85% of the population having micronuclei in anaphase, providing firm evidence that the hypotrich repeat sequence is not functional in Tetrahymena. Surprisingly, in spite of the telomeric sequence mutation, neither the ter1-43AA nor ter1-44+AA mutant displayed any significant loss of telomere length regulation. These results demonstrate that loss of telomere cap integrity, rather than length regulation, leads to the anaphase defect.  相似文献   

4.
Developmentally programmed healing of chromosomes by telomerase in Tetrahymena   总被引:40,自引:0,他引:40  
G L Yu  E H Blackburn 《Cell》1991,67(4):823-832
Healing of a broken chromosome and in eukaryotes involves acquisition of a telomere. During macronuclear development in ciliated protozoans, germline chromosomes are fragmented into linear subchromosomes, whose ends are healed by de novo addition of telomeres. We showed previously that the ribonucleoprotein enzyme telomerase elongates preexisting telomeres by synthesizing one telomeric DNA strand, using a template sequence in the RNA moiety of the enzyme. By marking telomerase with a mutation in the telomerase RNA template, which causes synthesis of novel telomeric sequences, we now show that in the ciliate Tetrahymena, telomerase directly adds telomeric DNA onto nontelomeric sequences during developmentally controlled chromosome healing. Unexpectedly, one telomerase RNA template mutation converted telomerase from an enzyme that normally synthesizes precisely templated sequences to a less precise polymerase that sometimes synthesizes irregular telomeric repeats in vivo.  相似文献   

5.
In the yeast Kluyveromyces lactis, the telomeres are composed of perfect 25-bp repeats copied from a 30-nucleotide RNA template defined by 5-nucleotide terminal repeats. A genetic dissection of the K. lactis telomere was performed by using mutant telomerase RNA (TER1) alleles to incorporate mutated telomeric repeats. This analysis has shown that each telomeric repeat contains several functional regions, some of which may physically overlap. Mutations in the terminal repeats of the template RNA typically lead to telomere shortening, as do mutations in the right side of the Rap1p binding site. Mutations in the left half of the Rap1p binding site, however, lead to the immediate formation of long telomeres. When mutated, the region immediately 3' of the Rap1p binding site on the TG-rich strand of the telomere leads to telomeres that are initially short but eventually undergo extreme telomere elongation. Mutations between this region and the 3' terminal repeat cause elevated recombination despite the presence of telomeres of nearly wild-type length. Mutants with highly elongated telomeres were further characterized and exhibit signs of telomere capping defects, including elevated levels of subtelomeric recombination and the formation of extrachromosomal and single-stranded telomeric DNA. Lengthening caused by some Rap1 binding site mutations can be suppressed by high-copy-number RAP1. Mutated telomeric repeats from a delayed elongation mutant are shown to be defective at regulating telomere length in cells with wild-type telomerase, indicating that the telomeric repeats are defective at telomere length regulation.  相似文献   

6.
Chromatin diminution in the parasitic nematode Ascaris suum represents an interesting case of developmentally programmed DNA rearrangement in higher eukaryotes. At the molecular level, it is a rather complex event including chromosome breakage, new telomere formation and DNA degradation. Analysis of a cloned somatic telomere (pTel1) revealed that it has been newly created during the process of chromatin diminution by the addition of telomeric repeats (TTAGGC)n to a chromosomal breakage site (Müller et al., 1991). However, telomere addition does not occur at a single chromosomal locus, but at many different sites within a short chromosomal region, termed CBR1 (chromosomal breakage region 1). Here we present the cloning and the analysis of 83 different PCR amplified telomere addition sites from the region of CBR1. The lack of any obvious sequence homology shared among them argues for a telomerase-mediated healing process, rather than for a recombinational event. This hypothesis is strongly supported by the existence of 1-6 nucleotides corresponding to and being in frame with the newly added telomeric repeats at almost all of the telomere addition sites. Furthermore, we show that telomeres are not only added to the ends of the retained chromosomal portions, but also to the eliminated part of the chromosomes, which later on become degraded in the cytoplasm. This result suggests that de novo telomere formation during the process of chromatin diminution represents a non-specific process which can heal any broken DNA end.  相似文献   

7.
Dynamics of telomere length variation in Tetrahymena thermophila   总被引:29,自引:0,他引:29  
We have analyzed the mechanism and dynamics of telomere length variation in the macronucleus of Tetrahymena thermophila. In a newly differentiated macronucleus, the average length of the telomeric repeated sequence, (C4A2 X T2G4)n, is closely regulated. In contrast, in vegetatively dividing cells in log phase, all macronuclear telomeric sequences lengthen coordinately by 3-10 bp per generation until up to 1000 bp are added. In both elongated and short telomeres, characteristic single-stranded breaks on both strands are distally located. Reduction of elongated telomeres to their original length involves either the appearance of a novel type of variant cell, incapable of net telomere elongation, or, under stationary phase conditions, a reversible removal of telomeric sequences. The demonstration that telomeres are dynamic structures provides evidence for a model of telomere length regulation by activities that add and remove telomeric repeats.  相似文献   

8.
J. Scott  C. Leeck    J. Forney 《Genetics》1993,134(1):189-198
The gene encoding the B type variable surface protein from Paramecium tetraurelia stock 51 has been cloned and sequenced. The 7,182 nucleotide open reading frame contains no introns and encodes a cysteine-rich protein that has a periodic structure including three nearly perfect tandem repeats in the central region. Interestingly, the B gene is located near a macronuclear telomere as was shown previously for two other paramecium surface protein genes. In this paper, we characterize four independent mutants with complete macronuclear deletions of the B gene. Previous analysis of different macronuclear deletion mutants of the A surface protein gene demonstrated two types of inheritance: typical Mendelian segregation (as illustrated by d12) and cytoplasmic inheritance (shown by d48). F(1) analysis of four B(-) mutants crossed with wild-type cells reveals heterozygous F(1) cell lines derived from both parental cytoplasms contain approximately the same copy number of the B gene, as expected for a recessive Mendelian mutation. Analysis of F(2) progeny from three of these four B(-) mutant crosses indicates that one of the three exhibits a Mendelian 1:1 segregation ratio of B(+) and B(-) cell lines. The other two show a preponderance of B(+) cells, but this is not correlated with the parental cytoplasmic type. In addition to having a large number of B(+) individuals, the d12.144, A(-), B(-) mutant produced some F(2) progeny that stably maintain less than normal macronuclear amounts of the A gene and/or the B gene.  相似文献   

9.
Telomerase adds telomeric DNA repeats to telomeric termini using a sequence within its RNA subunit as a template. We characterized two mutations in the Kluyveromyces lactis telomerase RNA gene (TER1) template. Each initially produced normally regulated telomeres. One mutation, ter1-AA, had a cryptic defect in length regulation that was apparent only if the mutant gene was transformed into a TER1 deletion strain to permit extensive replacement of basal wild-type repeats with mutant repeats. This mutant differs from previously studied delayed elongation mutants in a number of properties. The second mutation, TER1-Bcl, which generates a BclI restriction site in newly synthesized telomeric repeats, was indistinguishable from wild type in all phenotypes assayed: cell growth, telomere length, and in vivo telomerase fidelity. TER1-Bcl cells demonstrated that the outer halves of the telomeric repeat tracts turn over within a few hundred cell divisions, while the innermost few repeats typically resisted turnover for at least 3000 cell divisions. Similarly deep but incomplete turnover was also observed in two other TER1 template mutants with highly elongated telomeres. These results indicate that most DNA turnover in functionally normal telomeres is due to gradual replicative sequence loss and additions by telomerase but that there are other processes that also contribute to turnover.  相似文献   

10.
There exist about 1000-1500 internal telomeric sequences per haploid genome in the polytene chromosomes of the hypotrichous ciliate Stylonychia lemnae. All these telomeric repeats are contained in a very conserved element. This element consists of two 2 kb direct repeats flanking a 2.6 kb sequence. Immediately adjacent to one of the repeats a 18mer C4A4C4A4C2 telomeric sequence is localized. Sequences homologous to macronuclear DNA follow 180 bp downstream of the C4A4-bloc. These macronuclear homologous sequences are flanked by the second direct repeat. The possible origin and function of these telomere containing elements is discussed.  相似文献   

11.
During the formation of a new macronucleus in the ciliate Euplotes crassus, micronuclear chromosomes are reproducibly broken at approximately 10 000 sites. This chromosome fragmentation process is tightly coupled with de novo telomere synthesis by the telomerase ribonucleoprotein complex, generating short linear macronuclear DNA molecules. In this study, the sequences of 58 macronuclear DNA termini and eight regions of the micronuclear genome containing chromosome fragmentation/telomere addition sites were determined. Through a statistically based analysis of these data, along with previously published sequences, we have defined a 10 bp conserved sequence element (E-Cbs, 5'-HATTGAAaHH-3', H = A, C or T) near chromosome fragmentation sites. The E-Cbs typically resides within the DNA destined to form a macronuclear DNA molecule, but can also reside within flanking micronuclear DNA that is eliminated during macronuclear development. The location of the E-Cbs in macronuclear-destined versus flanking micronuclear DNA leads us to propose a model of chromosome fragmentation that involves a 6 bp staggered cut in the chromosome. The identification of adjacent macronuclear-destined sequences that overlap by 6 bp provides support for the model. Finally, our data provide evidence that telomerase is able to differentiate between newly generated ends that contain partial telomeric repeats and those that do not in vivo.  相似文献   

12.
Rap1p binds to sites embedded within the Saccharomyces cerevisiae telomeric TG1-3 tract. Previous studies have led to the hypothesis that Rap1p may recruit Sir3p and Sir3p-associating factors to the telomere. To test this, we tethered Sir3p adjacent to the telomere via LexA binding sites in the rap1-17 mutant that truncates the Rap1p C-terminal 165 amino acids thought to contain sites for Sir3p association. Tethering of LexA-Sir3p adjacent to the telomere is sufficient to restore telomeric silencing, indicating that Sir3p can nucleate silencing at the telomere. Tethering of LexA-Sir3p or the LexA-Sir3p(N2O5) gain-of-function protein to a telomeric LexA site hyperrepresses an adjacent ADE2 gene in wild-type cells. Hence, Sir3p recruitment to the telomere is limiting in telomeric silencing. In addition, LexA-Sir3p(N2O5) hyperrepresses telomeric silencing when tethered to a subtelomeric site 3.6 kb from the telomeric tract. This hyperrepression is dependent on the C terminus of Rap1p, suggesting that subtelomeric LexA-Sir3p(N205) can interact with Rap1p-associated factors at the telomere. We also demonstrate that LexA-Sir3p or LexA-Sir3p(N205) tethered in cis with a short tract of telomeric TG1-3 sequences is sufficient to confer silencing at an internal chromosomal position. Internal silencing is enhanced in rap1-17 strains. We propose that sequestration of silencing factors at the telomere limits the efficiency of internal silencing.  相似文献   

13.
A telomere terminal transferase activity was identified in developing macronuclear extracts from Euplotes crassus. The activity was essentially unregulated in vitro: up to 50 tandem repeats of the Euplotes telomeric repeat sequence TTTTGGGG were added onto synthetic telomeric oligonucleotide primers. Both the structure of the telomere substrate and its 3'-terminal sequence were recognized. The activity was destroyed by low concentrations of RNase A.  相似文献   

14.
15.
During sexual reproduction, Euplotes crassus precisely fragments its micronuclear chromosomes and synthesizes new telomeres onto the resulting DNA ends to generate functional macronuclear minichromosomes. In the micronuclear chromosomes, the macronuclear-destined sequences are typically separated from each other by spacer DNA segments, which are eliminated following chromosome fragmentation. Recently, in vivo chromosome fragmentation intermediates that had not yet undergone telomere addition have been characterized. The ends of both the macronuclear-destined and eliminated spacers were found to consist of six-base, 3′ overhangs. As this terminal structure on the macronuclear-destined sequences serves as the substrate for de novo telomere addition, we sought to determine if the spacer DNAs might also undergo telomere addition prior to their elimination. Using a polymerase chain reaction approach, we found that at least some spacer DNAs undergo de novo telomere addition. In contrast to macronuclear-destined sequences, heterogeneity could be observed in the position of telomeric repeat addition. The observation of spacer DNAs with telomeric repeats makes it unlikely that differential telomere addition is responsible for differentiating between retained and eliminated DNA. The heterogeneity in telomere addition sites for spacer DNA also resembles the situation found for telomeric repeat addition to macronuclear-destined sequences in other ciliate species.  相似文献   

16.
We sequenced and compared the telomeric regions of linear rDNAs from vegetative macronuclei of several ciliates in the suborder Tetrahymenina. All telomeres consisted of tandemly repeated C4A2 sequences, including the 5' telomere of the 11 kb rDNA from developing macronuclei of Tetrahymena thermophila. Our sequence of the 11 kb 5' telomeric region shows that each one of a previously described pair of inverted repeats flanking the micronuclear rDNA (Yao et al., Mol. Cell. Biol. 5: 1260-1267, 1985) is 29 bp away from the positions to which telomeric C4A2 repeats are joined to the ends of excised 11 kb rDNA. In general we found that the macronuclear rDNA sequences adjacent to C4A2 repeats are not highly conserved. However, in the non-palindromic rDNA of Glaucoma, we identified a single copy of a conserved sequence, repeated in inverted orientation in Tetrahymena spp., which all form palindromic rDNAs. We propose that this sequence is required for a step in rDNA excision common to both Tetrahymena and Glaucoma.  相似文献   

17.
F Müller  C Wicky  A Spicher  H Tobler 《Cell》1991,67(4):815-822
During the process of chromatin diminution, which takes place in all presomatic cells of the early Ascaris embryo, the heterochromatic termini of the chromosomes are lost. Here we show that the newly formed ends of the reduced somatic chromosomes carry tandem repeats of the telomeric sequence TTAGGC. Comparison of a cloned somatic telomere with the corresponding germline chromosomal region revealed that these telomeric repeats are not present at or near the chromosomal breakage site. They are most likely added by a telomerase-mediated event. Chromosomal breakage, which precedes the telomere addition process, takes place within a short, specific chromosomal region (CBR); however, it does not occur at a single locus, but rather at many different sites. Altogether, our data show that chromatin diminution in Ascaris is a complex molecular process that includes site-specific chromosomal breakage, new telomere formation, and DNA degradation.  相似文献   

18.
Interstitial telomeric sequences (ITSs), telomere-like repeats at intrachromosomal sites, are common in mammals and consist of tandem repeats of the canonical telomeric repeat, TTAGGG, or a repeat similar to this. We report that the ITS in human chromosome region 22q11.2 is, in the sequenced genome database, 101 tandem repeats of the sequence TTAGGGAGG. Using the primed in situ labeling (PRINS) technique and primers against the canonical telomeric repeat (TTAGGG), we illuminated telomeric sites for all chromosomes and an ITS locus at 22q11.2. Using the TTAGGGAGG sequence, we designed PRINS primers that efficiently and specifically illuminate the 22q11.2 ITS locus without illuminating telomeric and other ITS loci. The 22q11.2 locus has more repeat units than other ITSs loci enabling an unprecedented high detection frequency for this interstitial telomere locus. The 22q11.2 is associated with hot spots for disease-related chromosome breaks for multiple disorders, such as DiGeorge syndrome and chronic myeloid leukemia. We describe our findings that the ITS at 22q11.2 is in the same area of, and proximal to the common rearrangement region of multiple disorders. We suggest that the ITS might be involved in DNA repair processes in this area to protect the chromosome from more serious damage.  相似文献   

19.
20.
L A Klobutcher  C L Jahn  D M Prescott 《Cell》1984,36(4):1045-1055
During the life cycle of the hypotrichous ciliate Oxytricha nova, a macronucleus containing short, gene-sized DNA molecules is produced from a copy of the chromosomal micronuclear genome. In order to characterize the process of macronuclear development, we have isolated and determined the DNA sequence of a particular macronuclear gene and its micronuclear precursor. The results of this analysis indicate that macronuclear telomeric sequences (5'C4A4(3') repeats) are not present at the ends of the gene in its micronuclear chromosomal location and must be added during development. In addition, the micronuclear copy of the gene contains three short blocks of sequence that must be removed during development, implying the involvement of a nucleic acid-splicing process in generating mature macronuclear genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号