首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the subcellular compartmentalization of arylsulfatase-A (AS-A) in the testis and epididymis as well as the surface distribution in rat epididymal sperm. Testicular AS-A was compartmentalized specifically to the area underneath the outer acrosomal membrane of the acrosomal granule and to the dorsal aspect of the sperm acrosome. Epididymal AS-A was synthesized in the endoplasmic reticular (ER) network of principal cells and secreted into epididymal lumen as evident by its reactivity in the apical cytoplasm and vesicles therein underneath stereocilia. In clear cells, AS-A reactivity was found throughout the cytoplasmic machineries involved in endocytosis. Surface distribution of AS-A was initially detectable at the concave ridge as early as in sperm of the initial segment (IS). AS-A was additionally localized to the post-acrosomal region in caput (CP), corpus (CO) and cauda (CD) epididymal sperm. The expression levels of surface AS-A gradually increased during sperm transit from IS to CD epididymidis. These results favored the adsorption of AS-A from epididymal fluid onto the sperm surface, rather than shunting from the acrosome as a consequence of capacitation-associated membrane priming.This work was supported by Research Initiate Grant funded by Faculty of Science, Mahidol University to W.W.  相似文献   

2.
3.
The distribution of intramembranous particles (IMPs) and membrane filipin-sterol complexes (FSC) was examined ultrastructurally in mouse spermatozoa from the male reproductive tract and ejaculates. IMPs were qualitatively analyzed on freeze-fracture replicas of glutaraldehyde-fixed tissue, while membrane FSC were quantitatively analyzed on replicas of filipin-treated cells. The distribution pattern of IMPs of mouse spermatozoa was fundamentally similar to that of other mammalian spermatozoa. 1) In the head, the plasma membrane had a heterogeneous population density, e.g., few IMPs on the acrosomal region, particularly few on the marginal segment, and somewhat regularly arranged IMPs on the postacrosomal region. The acrosomal membrane had many IMPs in hexagonal arrays. The nuclear membrane had many IMPs on the P-face, few IMPs on the variegated E-face, and an intense population density on the P-face of the basal plate. 2) In the neck, the plasma membrane had many IMPs with square arrangements of small IMPs in some areas on the P-face; the redundant nuclear membrane had a few IMPs on both P- and E-faces. 3) In the tail, the plasma membrane had diagonal rows of IMPs in some areas amongst larger IMPs on the middle piece, while it had "zippers" composed of IMPs running parallel to the axis on the principal piece. The distribution of sperm membrane FSC may be summarized as follows: 1) In the head, the acrosomal plasma membrane, which was heavily labeled with filipin, had much more FSC in the equatorial segment than in the marginal segment throughout the study. The postacrosomal plasma membrane generally had no FSC, but some sperm in ejaculates were slightly positive to filipin. The acrosomal membranes (both outer and inner) had no FSC. The nuclear membrane in the main part of the head had less FSC in vas deferens and ejaculated sperm than in the epididymal sperm. The nuclear membrane on the basal plate had no FSC. 2) In the neck, the plasma membrane had little FSC. The redundant nuclear envelope had scattered FSC with a higher incidence in the epididymal sperm than in those from the vas deferens and ejaculates. The membrane scroll, which was elongated from the extreme caudal end of the redundant nuclear envelope, had abundant FSC in the vas deferens and ejaculated sperm. 3) The tail plasma membrane (both middle and principal piece), which was weakly labeled with filipin, had less FSC in sperm from the vas deferens and ejaculates than in those from the epididymis. The limiting membrane covering the mitochondria had no FSC.  相似文献   

4.
Spermatozoa, fluids, and principal cells from different regions of the epididymis were characterized by two-dimensional electrophoresis. Rete testis fluid was collected after 36-h efferent duct ligation, and cauda epididymal fluid was collected by retrograde perfusion through the vas deferens. Spermatozoa were collected after their exudation from minced caput and corpus epididymal tissue. Principal cells were recovered after enzymatic disaggregation and centrifugal elutriation of epididymides. Two-dimensional polyacrylamide gel electrophoresis was used to prepare protein profiles of all samples. Comparison of the proteins found in rete testis fluid versus those found in cauda epididymal fluid revealed a dramatic change in composition, including the loss, addition, or retention of specific proteins as well as changes in the relative concentrations of certain proteins. Prominent cauda epididymal fluid proteins, possibly contributed by the epididymal epithelium, were detected at 16, 23, and 34 kDa. After epididymal transit, a considerable decrease was observed in the number of aqueous-soluble sperm proteins. Differences in the protein composition of epididymal epithelial principal cells from the caput versus corpus epididymidis were also noted, suggesting that functional differences exist for these epididymal regions. Of particular interest was the occurrence of a prominent protein of approximately 20-23 kDa found in all sperm samples, in fluids, and in caput and corpus principal cells. However, this protein was absent in cauda epididymal sperm after 36-h efferent duct ligation. The rapid loss of this protein from sperm after efferent duct ligation suggests that this surgical intervention may affect spermatozoa residing within the epididymis.  相似文献   

5.
Prostaglandins (PGE2, PGF2 alpha) in the excurrent ducts of the male reproductive tract appear to be both modulators of ductal contractility for transport of spermatozoa and factors involved in the regulation of sperm maturation. To identify the tissue sites for the production of prostaglandins (PGs) in the excurrent ductal system, we have employed an immunohistochemical technique to localize prostaglandin H (PGH) synthase in the epididymis and vas deferens of the mouse. A mouse monoclonal antibody to PGH synthase was used and was shown to be specific for the mouse enzyme by Western blot analysis. In sexually mature mice, PGH synthase was primarily localized to the epithelium of the epididymis and vas deferens. Within the epididymal epithelium, immunoactivity appeared in all cell types of the initial segment, in a subpopulation of cells with predominantly apically oriented nuclei in the caput and corpus, and in low levels in the cauda. PGH synthase reactivity was the most intense in the epithelial cells of the vas deferens. PGH synthase was not detected in smooth muscle cells, spermatozoa, or luminal fluid. This study suggests that the epithelium of the excurrent ductal system of the mouse is the major site for PG production. The regionalization of PGH synthase to cells in the epididymis thought to be involved in the absorption of luminal fluid suggests that PGs may play a role in fluid and ion transport.  相似文献   

6.
The epididymis and vas deferens constitute not only a simple conduit for sperm transport but also play an important physiological role in the development of sperm fertilizing ability. The epithelial compartment plays a major functional role in determining the biochemical composition of the luminal fluid in which the spermatozoa undergo a series of structural, biochemical and metabolic changes. During epididymal transit spermatozoa acquire their capacity for motility and also their ability to attach and bind to the zona pellucida and fertilize the oocyte. In man, sperm maturation may occur in the extreme proximal region of the epididymis. The regulation of epididymal and vasa deferential function, as well as sperm maturation, are under androgenic control  相似文献   

7.
8.
Primate sperm acquire functional maturity, including vigorous forward motility and the ability to fertilize an ovum, as they transit the unique, regional microenvironment of the epididymal lumen. Several proteins secreted into this luminal fluid are epididymal-specific and androgen-dependent, and thus contribute potentially to sperm maturation. For the adult male chimpanzee, we report the effects of GnRH antagonist-induced androgen deprivation on the histology of the epithelia and interstitium composing the ductuli efferentes, ductus epididymis, proximal ductus (vas) deferens. After 21 days of androgen deprivation, epididymal tissues exhibit characteristic atrophic changes, including cellular disorganization, degradation, and loss of structures. Androgen-deprived cytoplasm is differentially and characteristically disrupted, vacuolated, and reduced in volume, resulting in decreased epithelial height and loss of stereocilia. Most principal cell nuclei appear hyperchromatic, smaller in size, more irregular in outline, and disordered in arrangement, while others appear swollen and vacuolated. Apical cells of the efferent ducts and the basal cells and microvillar borders of the ductus epididymis seem minimally affected by androgen deprivation. Such histologically differential responses suggest correspondingly that androgen is differentially essential to the maintenance of the epididymis and thus to normal functioning of the component tissues. Therefore, epididymal epithelia directly and their secretions indirectly are differentially androgen-dependent.  相似文献   

9.
Unlike the other penaeiodean shrimp, the ridge back shrimp, Sicyoniaingentis does not produce a spermatophore, but transfers sperm suspended in seminal plasm. This paper reports on the histomorphology and ultrastructure of the vas deferens with reference to its functional role in secreting the sperm bearing materials. The vas deferens is divisible into proximal secretory, mid storage and distal ejaculatory regions. The epithelial cells lining the proximal vas deferens are comprised of secretory and absorptive cell types. The loose sperm cells found in the lumen of this region are in an immature condition, and are agglutinated into a compact mass with signs of spermiogenesis in the mid vas deferens. The epithelial cells lining the mid vas deferens are short flattened cells. The distal vas deferens is ensheathed by muscular fibres. The inner epithelial cells are highly secretory and contain numerous microvilli at the luminal end. The sperm cord gets liquefied in this region facilitating the transfer of sperm in liquid form to the female during mating.  相似文献   

10.
Ejaculated spermatozoa were washed and extracted with 0.6 M NaCl (2 h at 0 degree C) and the extract used to immunize rabbits. The crude antibody reacted with epididymal fluid and cytosol and with prostatic cytosol but did not recognize blood serum and testicular cytosol. After adsorption with prostatic proteins, the serum was specific for epididymis. Using immunoelectrophoresis and affinity chromatography, it was found that the antibody reacted with antigens which co-electrophoresed with androgen-dependent proteins (mobility relative to albumin, Ra) 0.3, 0.43 and 1.0, previously identified in human epididymis. Weak immunofluorescence in the epithelium of proximal caput tubules was detected on tissue sections. In contrast, distal caput and corpus tubules displayed a strong fluorescence in the cytoplasm of basal and principal cells as well as in spermatozoa present in lumen. Intense fluorescence was limited to the luminal content and the apical border and sterociliae of principal cells in caudal tubules. When applied to isolated spermatozoa, the reaction was negative for testicular sperm, while 49%, 82% and 100% of spermatozoa from caput, corpus and cauda, respectively, had a fluorescent acrosomal cap. An apparent gradient of increasing fluorescent intensities was also observed in this sequence. The reaction was strongest over the acrosomal cap, apparently absent in the postacrosomal region and weaker over the midpiece and principal piece. These results are interpreted as suggestive of the progressive coating of human spermatozoa with androgen-dependent epididymal proteins during epididymal transit.  相似文献   

11.
小鼠附睾头精子,其头部Ca~(2 )在顶体前区顶体外膜内侧结合最多,Ca~(2 )沉淀反应颗粒于该处呈连续层状。附睾头豚鼠精子其头部结合Ca~(2 )含量很少,且主要结合于顶体前区腹面顶体外膜内侧。小鼠附睾体和附睾尾精子Ca~(2 )的分布特征基本上和附睾头精子相同。但豚鼠附睾尾精子顶体外膜内侧无Ca~(2 )结合。和附睾头、附睾尾的附睾液相比,附睾体附睾液基质内具有大量Ca~(2 )存在。附睾体柱状上皮细胞的微绒毛切面上也具有Ca~(2 )沉淀反应颗粒,微绒毛可能与附睾液Ca~(2 )含量的调节有关。精子尾部Ca~(2 )主要分布于线粒体内,在质膜内、外两侧和线粒体外膜外侧也结合有少量的Ca~(2 )。和小鼠精子相比,豚鼠精子尾部线粒体内具有大量的Ca~(2 )。  相似文献   

12.
Proteins, synthesized by the epididymal epithelium, are secreted sequentially into the lumen of the ducts epididymis where they effect sperm maturation and enable functional motility and fertilizing capacity. EP1 is a major secretory glycoprotein of chimpanzee (Pan troglodytes) epididymis. The epididymal duct exhibits diverse histology (Smithwick & Young, 1997). Epithelia I-V of the efferent ducts show no characteristic anti-EP1 binding. The densest granules of anti-EP1 reaction product appear in epithelium VI adjacent to the basal lamina in the infranuclear region of the principal cells (PCs), in the cytoplasm of the apical half of the PCs, and in the perinuclear and perivacuolar cytoplasm of the basal cells. In epithelia VII-XIV of the ductus epididymis proper, anti-EP1 binding decreases distally and is localized in the cytoplasm of the PCs and basal cells, among the stereocilia of the luminal border, within various microvillar borders, and in the luminal fluid. Therefore, EP1 appears to be synthesized and secreted primarily in the caput region of the ductus epididymis and may be reabsorbed nonselectively across epithelia with apical microvilli, including the non-ciliated cells of efferent ducts, the distal corpus and cauda of the ductus epididymis, and the proximal ductus deferens.  相似文献   

13.
A specific 135-kDa protein was purified from porcine cauda epididymal fluid. Analysis of its N-terminal amino acid sequence revealed it to be a new protein. Stable clones of hybridomas that produced monoclonal antibodies against the purified 135-kDa protein were established. A clone, B-11, reacting both with epididymal fluid and with sperm plasma membranes was selected and used in this study. Immunoblotting analysis showed that B-11 reacted only with a 135-kDa protein among epididymal fluid proteins. In contrast, B-11 did not recognize a similar 135-kDa sperm protein but did strongly react with a 27-kDa protein among sperm membrane proteins, extracted by NP-40 in the presence of protease inhibitors. B-11 also reacted only with a 27-kDa protein fragment among trypsin digests of the 135-kDa epididymal protein. The 135-kDa protein was first detected, by ELISA or immunoblotting analysis, at the beginning of the corpus epididymis. Maximal levels were reached in the distal corpus and levels were slightly decreased in the cauda epididymis. On the other hand, the surface of caput sperm were found to contain small amounts of antigen(s), the concentration of which gradually increased during epididymal transit. In immunocytochemical studies, the antigen was detectable in the epithelial cells from the initial segment to the corpus of the epididymis but not in the caudal cells. In the lumen, the presence of the 135 kDa protein was apparent in the corpus (at a maximum in the middle and distal corpus) and to a lesser degree in the caudal lumen. The 27-kDa protein was distributed all over the equatorial region of the acrosome of less than 10% of caput epididymal sperm. As sperm passed through the corpus epididymis, the percentage of immunoreactive cells increased and the protein was restricted to specific domains of the sperm head. Thus, on the mature sperm, antigen was localized in a crescent-shaped area of the equatorial segment just behind the anterior part of the acrosome and on the apical rim of the sperm head. This is the first observation of a sperm surface antigen derived from an epididymal protein as a proteolytic fragment that interacts with specific regions of the sperm membrane during the process of spermatozoa maturation.  相似文献   

14.
We investigated the tissue distribution and cellular localization of microsomal PGE synthase-1 (mPGES-1) and cyclooxygenase (COX)-1 and -2 in male monkey reproductive organs. Western blotting revealed that monkey mPGES-1 was expressed most intensely in the seminal vesicles, moderately in the testis, and weakly in the epididymis and vas deferens. The tissue distribution profile was quite different from those profiles for rats, rabbits, and pigs, e.g., rat mPGES-1 was the most abundant in the vas deferens, and the rabbit and pig enzymes, in the testis. Immunohistochemical staining with mouse monoclonal anti-human mPGES-1 antibody revealed that monkey mPGES-1 was localized in spermatogonia, Sertoli cells, and primary spermatocytes of testis and in epithelial cells of the epididymis, vas deferens, and seminal vesicles. In monkeys, COX-1 was localized in epithelial cells of the epididymis and vas deferens, whereas COX-2 was dominantly found in epithelial cells of the seminal vesicles.  相似文献   

15.
A low-bicarbonate concentration and an acidic pH in the luminal fluid of the epididymis and vas deferens are important for sperm maturation. These factors help maintain mature sperm in an immotile but viable state during storage in the cauda epididymidis and vas deferens. Two proton extrusion mechanisms, an Na(+)/H(+) exchanger and an H(+)ATPase, have been proposed to be involved in this luminal acidification process. The Na(+)/H(+) exchanger has not yet been localized in situ, but we have reported that H(+)ATPase is expressed on the apical membrane of apical (or narrow) and clear cells of the epididymis. These cells are enriched in carbonic anhydrase II, indicating the involvement of bicarbonate in the acidification process and suggesting that the epididymis is a site of bicarbonate reabsorption. Previous unsuccessful attempts to localize the Cl/HCO(3) anion exchanger AE1 in rat epididymis did not investigate other anion exchanger (AE) isoforms. In this report, we used a recently described SDS antigen unmasking treatment to localize the Cl/HCO(3) exchanger AE2 in rat and mouse epididymis. AE2 is highly expressed in the initial segment, intermediate zone, and caput epididymidis, where it is located on the basolateral membrane of epithelial cells. The cauda epididymidis and vas deferens also contain basolateral AE2, but in lower amounts. The identity of the AE2 protein was further confirmed by the observation that basolateral AE2 expression was unaltered in the epididymis of AE1-knockout mice. Basolateral AE2 may participate in bicarbonate reabsorption and luminal acidification, and/or may be involved in intracellular pH homeostasis of epithelial cells of the male reproductive tract.  相似文献   

16.
Polyclonal antibody was used to partially characterize REP38, a major rabbit epididymal secretory protein. Western blot analyses and immunohistochemistry indicated that REP38 is only expressed in regions 5 and 6 of the epididymis (corpus epididy-midis) and is localized in the supranuclear region and microvilli of the principal cells in these regions. It was not expressed in other tissues of the body. In region 8 (cauda epididymidis), REP38 was detected in the luminal border and cytoplasm of scattered principal cells, indicating that it may be reabsorbed in this region. This protein accumulated on the sperm plasma membrane downstream of region 5 and was localized predominantly over the acrosomal and postacrosomal regions of the head and the middle piece. Although tightly bound to epididymal sperm, REP38 migrated to the equatorial segment under conditions in vivo that would promote capacitation. When tested in vitro, anti-REP38 IgG reduced the percentage of ova fertilized in a concentration-dependent manner, apparently by blocking sperm-egg fusion.  相似文献   

17.
18.
Rat sperm isolated from the caput and caudal epididymis and the vas deferens were subjected to multiple partition in aqueous two-phase systems. The technique was used to reveal heterogeneity of a sperm population with respect to particular surface properties. Sperm from all three regions gave broad distributions indicative of heterogeneous cell populations. Greatest heterogeneity was observed for cauda sperm with caput and was sperm producing similar distributions.Following multiple partition sperm from different regions of the distribution profiles were immunostained with three antibodies known to recognise maturation antigens. The results show that some antigens are acquired during epididymal transit whilst others are present throughout.The partition (surface heterogeneity) seen cannot therefore be explained solely by the distribution of the antigens recognised by 2D6, 6B2 and 3D5.  相似文献   

19.
A long-standing problem in epididymal physiology is the fate of unejaculated spermatozoa in the cauda epididymidis under conditions such as congenital absence of the vas deferens, long-term vasectomy, or castration. There is no convincing evidence for significant absorption of spermatozoa, defective or otherwise, by spermiophagy or dissolution in the epididymis of normal animals. Spermiophagy by epithelial cells or intraluminal macrophages may take place if the duct ruptures and granulomas form (e.g., after experimental ligation), although there is no quantitative information on the rate of sperm removal by this means. In one animal model (the rabbit), the epididymis is unusually resistant to granuloma formation and has provided unique insights into a phenomenon that is suggested to be present in all species. Spermatozoa retained in the rabbit cauda epididymidis by placing ligatures on the vas deferens and corpus epididymidis degenerate after several weeks but do not decrease significantly in numbers. After castration, however, they die very rapidly and >90% disappear. It is hypothesized that, in the normal androgen-maintained epididymis, degradative pathways are present in the luminal fluid that are constitutively inhibited by survival signals emanating from the epithelium. In the absence of androgen, the intraluminal mileau changes and death signals predominate that activate degradative pathways via the ubiquitin-proteasome system, DNAses, etc., to mediate dissolution of sperm organelles and nucleoprotein. It is suggested that the latter condition is the default situation and is only prevented by the stimulatory action of androgens on the epididymal epithelium.  相似文献   

20.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号