首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of Phycoerythrin Synthesis during Chromatic Adaptation   总被引:11,自引:1,他引:10       下载免费PDF全文
  相似文献   

2.
3.
The regulation of phycocyanin synthesis in response to growth in chromatic illumination was studied in 69 strains of cyanobacteria. Cyanobacteria (24 of 31 strains examined), which chromatically adapt by modulating the synthesis of both phycocyanin and phycoerythrin, controlled phycocyanin synthesis through the differential, photoregulated expression of two phycocyanin species (two alpha-type and two beta-type subunits). For these strains the expression of one pair of phycocyanin subunits was constitutive (i.e. irrespective of the light wavelength in which the cells were grown); the expression of the second pair of phycocyanin subunits occurred specifically during growth in red light. Two facultatively heterotrophic cyanobacteria, Calothrix strains 7101 and 7601, synthesized both the constitutive and the inducible pairs of phycocyanin subunits when grown heterotrophically in the dark after transfer from either red or green light. No evidence for the existence of multiple and/or photoregulated phycocyanin species was found for cyanobacteria (25 strains) incapable of chromatic adaptation, nor for cyanobacteria (13 strains) which chromatically adapt by modulating the synthesis of phycoerythrin alone.  相似文献   

4.
A spontaneous, stable, pigmentation mutant of Nostoc sp. strain MAC was isolated. Under various growth conditions, this mutant, R-MAC, had similar phycoerythrin contents (relative to allophycocyanin) but significantly lower phycocyanin contents (relative to allophycocyanin) than the parent strain. In saturating white light, the mutant grew more slowly than the parent strain. In nonsaturating red light, MAC grew with a shorter generation time than the mutant; however, R-MAC grew more quickly in nonsaturating green light.

When the parental and mutant strains were grown in green light, the phycoerythrin contents, relative to allophycocyanin, were significantly higher than the phycoerythrin contents of cells grown in red light. For both strains, the relative phycocyanin contents were only slightly higher for cells grown in red light than for cells grown in green light. These changes characterize both MAC and R-MAC as belonging to chromatic adaptation group II: phycoerythrin synthesis alone photocontrolled.

A comparative analysis of the phycobilisomes, isolated from cultures of MAC and R-MAC grown in both red and green light, was performed by polyacrylamide gel electrophoresis in the presence of 8.0 molar urea or sodium dodecyl sulfate. Consistent with the assignment of MAC and R-MAC to chromatic adaptation group II, no evidence for the synthesis of red light-inducible phycocyanin subunits was found in either strain. Phycobilisomes isolated from MAC and R-MAC contained linker polypeptides with relative molecular masses of 95, 34.5, 34, 32, and 29 kilodaltons. When grown in red light, phycobilisomes of the mutant R-MAC appeared to contain a slightly higher amount of the 32-kilodalton linker polypeptide than did the phycobilisomes isolated from the parental strain under the same conditions. The 34.5-kilodalton linker polypeptide was totally absent from phycobilisomes isolated from cells of either MAC or R-MAC grown in green light.

  相似文献   

5.
6.
The isolated cyanobacterium containing biopigments like chlorophyll-a, phycoerythrin, phycocyanin, and carotenoid was cultured under different quality of light modes to ascertain biomass and pigment productivity. On the basis of 16S rRNA gene sequence, the isolate was identified as Pseudanabaena sp. Maximum biomass concentration obtained in white-, blue-, and green-light was 0.82, 0.94, and 0.89 g/L, respectively. It was observed that maximum phycoerythrin production was in green light (39.2 mg/L), ensued by blue light (32.2 mg/L), while phycocyanin production was maximum in red light (10.9 mg/L). In yellow light, pigment production as well as the growth rate gradually declined after 12 days. Carotenoid production decreased in blue-, white-, and red-light after 15 days, while in green light it had increased gradually. The present communication suggests that Pseudanabaena sp. can be used for commercial production of phycoerythrin when grown under green light.  相似文献   

7.
Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a phycocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.  相似文献   

8.
Many photosynthetic organisms can acclimate to the quantity and quality of light present in their environment. In certain cyanobacteria the wavelengths of light in the environment control the synthesis of specific polypeptides of light harvesting antenna complex or phycobilisome. This phenomenon, called complementary chromatic adaptation, is most dramatically observed in comparison of cyanobacteria after growth in green light and red light. In red light-grown cells the phycobilisome is largely composed of phycocyanin and its associated linker polypeptides (the latter are important for the assembly of the phycocyanin subunits and their placement within the light harvesting structure); the organisms appear blue-green color. In green light-grown cells the phycobilisome is largely composed of phycoerythrin and its associated linker polypeptides; the organisms appear red in color. The ways in which these cyanobacteria sense their changing light environment and the regulatory elements involved in controlling the process of complementary chromatic adaptation are discussed in this review.  相似文献   

9.
10.
A mutant of the chromatically adapting cyanobacterium Fremyella diplosiphon, incapable of phycoerythrin synthesis but responding to wavelength modulation of its biliprotein content, was isolated. The biliprotein composition of the mutant and of the wild type were identical after growth in red light, but green light induced, in the mutant, the synthesis of a biliviolin-type chromophore bound to some of the alpha subunits of its phycocyanin. Implications of the results on the regulation and possible pathways of biliprotein biosynthesis are discussed.  相似文献   

11.
Chlorophyll a and phycocyanin synthesis in the cyanobacterium Calothrix crustacea Schousboe (ecophene Rivularia bullata) have been studied in white light after the application of red and green light pulses. The light quality produces a complementary pattern in the pigment synthesis. Chlorophyll synthesis is stimulated by red light pulses whereas phycocyanin synthesis is by green light pulses. Because the effect of red light on chlorophyll synthesis shows some far-red photoreversibility, the action of phytochrome is proposed. The green light effect on phycocyanin synthesis is only partially reversed by far-red light. This reversion is lost after incubation in white light for two hours. The effect of green light on phycocyanin synthesis could not only be due to phytochrome since theoretically in green light the level of the active form of phytochrome is lower than in red light. Thus, the action of a specific green light photoreceptor is proposed.  相似文献   

12.
Action Spectra for Chromatic Adaptation in Tolypothrix tenuis   总被引:8,自引:3,他引:5       下载免费PDF全文
The dark synthesis of biliproteins in the blue-green alga Tolypothrix tenuis is controlled by brief light treatments. Green light potentiates synthesis of phycoerythrin and red light potentiates synthesis of phycocyanin. Red reverses the effect of green and vice versa. Action spectra for the red and green effects were obtained for the wavelength region 320 nanometers to 710 nanometers, at 10-nanometer intervals. The principal action band in the red peaks at 660 nanometers, with a half-band width of 58 nanometers and an accompanying shortwave band at 360 nanometers. The green action band peaks at 550 nanometers, with a half-band width of 76 nanometers, and a shortwave band at 350 nanometers. Chromatic adaptation and another photomorphogenic response in the blue-green algae are discussed in terms of possible regulation by a photoreversible pigment recently isolated from Tolypothrix.  相似文献   

13.
The unicellular rhodophyte Rhodella violacea can adapt to a wide range of irradiances. To create a light stress, cells acclimated to low light were transferred to higher irradiance and the kinetics of various changes produced by the light shift were analyzed. The proton gradient generated by excess light led to a non-photochemical quenching of the chlorophyll fluorescence and some photoinhibition of photosystem II centers was also produced by the light stress. After the shift to higher irradiance, the mRNA levels of three chloroplast genes that encode phycoerythrin and phycocyanin apoproteins and heme oxygenase (the first enzyme specific to the bilin synthesis) were negatively regulated. A change in the amount of thylakoids and in the total pigment content of the cells occurred during light acclimation after a light stress. The change in the size of the phycobilisome was limited to dissapearance of the terminal phycoerythrin hexamers in some of the rods. The ability of R. violacea to photoacclimate depends both on large changes in thylakoid number and pigment content and on smaller changes in the antenna size of photosystem II.  相似文献   

14.
&#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(2):257-261
利用发光二极管(LED)作为光源,以冷百荧光灯光作为对照,研究不同光质红光637 nm、绿光529 nm、蓝光453 nm、白光(400700) nm对念珠藻葛仙米生长和生理生化特性的影响。结果表明:在培养前期,红光促进藻蓝蛋白合成,而藻红蛋白合成受抑制;蓝光和绿光则促进藻蓝蛋白合成。在培养后期,红光处理有利于叶绿素a和类胡萝卜素积累,其含量分别达到干重的1.33%和0.24%;绿光、白光和冷白荧光培养物的相应色素的含量均约占1.0%和0.16%;蓝光培养物的相应色素含量分别仅为0.45%和0.11%。红光培养物的氨基酸含量达干重的23.1%,是对照的1.58倍。除蓝光外其他光质对还原糖的含量影响无显著差异。在培养过程中LED白光和冷白荧光培养物的平均相对生长速率分别约为其他色光培养物的1.3和1.5倍。    相似文献   

15.
1. The fluorescence spectra of the alga Porphyridium have been recorded as energy distribution curves for eleven different incident wave lengths of monochromatic incident light between wave lengths 405 and 546 mµ. 2. In these spectra chlorophyll fluorescence predominates when the incident light is in the blue part of the spectrum which is strongly absorbed by chlorophyll. 3. For blue-green and green light the spectrum excited in Porphyridium contains in addition to chlorophyll fluorescence, the fluorescence bands characteristic of phycoerythrin and of phycocyanin. 4. From these spectra the approximate curves for the fluorescence of the individual pigments phycoerythrin, phycocyanin, and chlorophyll in the living material have been derived and the relative intensity of each of them has been obtained for each of the eleven incident wave lengths. 5. The effectiveness spectrum for the excitation of the fluorescence of these three pigments in vivo has been plotted. 6. From comparisons of the effectiveness spectrum for the excitation of each of these pigments it appears that both phycocyanin and chlorophyll receive energy from light which is absorbed by phycoerythrin. 7. It is suggested that phycocyanin may be an intermediate in the resonance transfer of energy from phycoerythrin to chlorophyll. 8. Since phycoerythrin and phycocyanin transfer energy to chlorophyll, it appears probable that chlorophyll plays a specific chemical role in photosynthesis in addition to acting as a light absorber.  相似文献   

16.
Complementary chromatic adaptation, a photomorphogenetic response, known to occur in many cyanobacteria, enables them to efficiently absorb prevalent wavelengths of light in the environment. In the present study, we have described the influence of light on phycobiliprotein production in three marine phycoerythrin producing cyanobacterial cultures, namely, Lyngbya sp. A09DM, Phormidium sp. A27DM and Halomicronema sp. A32DM. A comparative study (UV-visible overlay spectra and SDS-PAGE analyses) of phycobiliproteins purified from all the three cultures grown in white, yellow, red and green lights has been confirmed. White light was taken as control. Red and green lights were taken to check their effect on phycocyanin and phycoerythrin production, respectively. Yellow light was studied as its wavelength falls in between green and red light. Lyngbya sp. A09DM was found to be the best chromatically adapting cyanobacterium followed by Halomicronema sp. A32DM. These two cultures can be placed in group III chromatic adaptors. Phormidium sp. A27DM was the least chromatically adapting culture and can be placed in group II chromatic adaptors. The study signifies that even light plays an important role along with nutrient availability in adapting cultures to changing environmental conditions.  相似文献   

17.
A gene from groundnut (Arachis hypogaea) coding for stilbene synthase was transferred together with a chimaeric kanamycin resistance gene. It was found to be rapidly expressed after induction with UV light and elicitor in tobacco cells (Nicotiana tabacum). Comparative studies of stilbene synthase mRNA synthesis in groudnut and transgenic tobacco suspension cultures revealed the same kinetics of gene expression. Stilbene synthase specific mRNA was detectable 30 minutes after elicitor induction and 10 minutes after UV irradiation. The maximum of mRNA accumulation was between 2 and 8 hours post induction. 24 hours after induction stilbene synthase mRNA accumulation ceased. Furthermore, in transgenic tobacco plants, the gene was found to be inducible in sterile roots, stems and leaves. Stilbene synthase was demonstrated in crude protein extracts from transgenic tobacco cell cultures using specific antibodies. Resveratrol, the product of stilbene synthase, was identified by HPLC and antisera raised against resveratrol.  相似文献   

18.
The structure and function of phycobilisomes in the rhodophyte Porphyridium sp. were investigated by comparing the properties of the wild type with a pigment mutant called C12. When grown under low light, cells of C12 were bright orange, while wild-type cells were deep red. The results obtained from a characterization of purified phycobilisomes of the mutant C12 led us to propose the existence in Porphyridium sp. phycobilisomes of two types of rods, some containing only phycoerythrin and others containing phycoerythrin bound to phycocyanin, which is in turn linked to the core by the linker LRC. By studying the partitioning of phycobiliproteins between phycobilisomes and pools of free phycobiliproteins, we found that phycocyanin in the C12 mutant was only present in the pool of free proteins and that its specific linker, LRC, was totally absent. Phycoerythrin was present in the free pool and in the purified phycobilisomes as well. One of the three specific phycoerythrin linkers γ was missing. In light of the fact that in the C12 mutant, the linker LRC is absent and that there is no phycocyanin bound to the phycobilisomes, we propose that the rods in the mutant contain only phycoerythrin. These phycobilisomes are nevertheless functional and exhibit an efficient excitation transfer from phycoerythrin directly to allophycocyanin. Electron microscopy showed the purified phycobilisomes of C12 to be less dense than those of the wild type. This change was attributed to the disappearance of the rods containing the combination phycocyanin/phycoerythrin. Light still regulates phycobiliprotein synthesis in the mutant, as shown by the change in the color of the culture, which turned green-yellow when cells were shifted from low light to high light growth conditions. Light also regulates the structure of the phycobilisomes, which have fewer rods under high light growth conditions.  相似文献   

19.
Gracilaria birdiae Plastino et E.C. Oliveira is an economically important marine red alga exploited for the production of agar in Brazil. A rare light green strain of G. birdiae was found in a natural population, which raised new questions regarding intraspecific variation. Crosses were performed in unialgal cultures to determine the mode of color inheritance of this light green strain. We determined the growth rate and pigment composition of the light green strain and compared it to the wild‐type, red strain. The light green color is stable and showed a recessive nuclear transmission. The light green strain had lower contents of chlorophyll‐a and phycobiliproteins (phycoerythrin, phycocyanin, and allophycocyanin), and grew more slowly than the red strain. This low performance is probably the reason why this mutant, although being stable, is so rare in nature. Nevertheless, it can be useful as a genetic visual marker and to investigate the structure and functioning of the photosynthetic apparatus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号