首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the chicken pineal gland, norepinephrine, released at sympathetic nerve endings, plays a role in synchronizing the circadian rhythm of melatonin synthesis. This effect appears to be exerted via an adrenergic inhibition of arylalkylamine N-acetyltransferase, the melatonin rhythm-generating enzyme. The present study indicates that the nighttime peak of N-acetyltransferase activity developed by organ-cultured chick pineal glands is inhibited by adrenergic agonists with a potency order characterizing alpha 2-adrenergic receptors: UK 14,304 greater than clonidine greater than alpha-methylnorepinephrine = epinephrine greater than cirazoline greater than phenylephrine greater than isoproterenol. The mechanism of this alpha 2-adrenergic response was further analyzed in organ cultures, by studying the ability of clonidine to block the cyclic AMP-dependent and the depolarization-dependent stimulations of N-acetyltransferase activity. Clonidine prevented the rise in N-acetyltransferase activity evoked by the adenylate cyclase activators forskolin and cholera toxin or by the phosphodiesterase inhibitor Ro 20,1724. The stimulatory effect of dibutyryl cyclic AMP was also blocked by clonidine. Activation of pineal alpha 2-adrenergic receptors effectively prevented the stimulation of N-acetyltransferase by depolarizing concentrations of KCl. The possibility that the alpha 2-adrenergic effect might be exerted at a step distal to cyclic AMP production is discussed.  相似文献   

2.
—When pineal glands of 10–12-day-old chicks were organ-cultured in darkness, serotonin N-acetyltransferase activity was low during the daytime, increased at midnight and then decreased to the daytime level the next morning. The pattern of increase and decrease of enzyme activity in cultured pineal glands was comparable to the circadian rhythm of N-acetyltransferase activity in vivo. When pineal glands were kept at a low temperature for 5 h prior to culture, the phase of autonomous rhythm of enzyme activity was delayed. When chicken pineal glands were cultured during the daytime for 6 h, derivatives of adenosine 3′, 5′-monophosphate (cyclic AMP), cholera toxin, a high concentration of KCl and phosphodiesterase inhibitors increased N-acetyltransferase activity 3–7-fold, indicating an involvement of cyclic AMP in the regulation of N-acetyltransferase activity in chicken pineal gland as has been shown in rat pineal gland. When pineal glands were cultured at night in darkness, cholera toxin or a high KCl did not enhance the night-time increase of the enzyme activity. Derivatives of cyclic AMP or phosphodiesterase inhibitors enhanced the autonomous night-time increase of N-acetyltransferase activity in an additive or more than additive manner in cultured pineal glands. These observations suggest that adenylate cyclase of pinealocytes is inactive during daytime, but is activated at night in darkness, which is transduced to the synthesis of N-acetyltransferase molecules. Catecholamines suppressed the basal level and the nocturnal increase of N-acetyltransferase activity via α-adrenergic receptor. The nocturnal increase of enzyme activity was prevented by cycloheximide or actinomycin D. Cocaine, which stabilizes cell membrane potential or light exposure, blocked the nighttime increase of N-acetyltransferase activity in cultured chicken pineal glands.  相似文献   

3.
Regulation and possible role of serotonin N-acetyltransferase in the retina   总被引:1,自引:0,他引:1  
The activity of retinal serotonin N-acetyltransferase (NAT) (arylamine acetyltransferase, EC 2.3.1.5), the penultimate enzyme in melatonin biosynthesis, exhibits properties of a circadian rhythm comparable to that seen in the pineal gland. Using an eye cup preparation we have found that circadian properties persist in vitro, which indicates that an endogenous circadian oscillator controlling NAT is present in the eye. Nighttime increases in NAT activity are suppressed by light, protein synthesis inhibitors, and catecholamines. In light, NAT activity is induced by conditions expected to increase intracellular levels of cyclic AMP (cAMP). This suggests that catecholamines and cAMP are normally involved in the regulation of NAT. Circadian indoleamine metabolism may play a role in the control of rhythmic photoreceptor metabolism as evidenced by the observation that melatonin and related compounds are potent activators of disk shedding.  相似文献   

4.
Circadian Variation of Cyclic AMP in the Rat Pineal Gland   总被引:3,自引:1,他引:2  
Abstract: This study was carried out to investigate circadian variation of cyclic AMP contents in the rat pineal glands, using the high-energy microwave radiation technique. The pattern of cyclic AMP concentration in the pineal gland showed a distinct circadian variation, with the maximum level at 0200 and the lowest at 1400. The administration of propranolol completely blocked the dark-induced increase in the pineal cyclic AMP level at 0200, and the administration of isoproterenol induced a threefold, rapid increase in the cyclic AMP level at 1400, although it did not change the level at 0200.  相似文献   

5.
Hydrocortisone acetate given to the neonatal rat diminishes subsequent elevations in pineal serotonin N-acetyltransferase (acetyl-coenzyme A:arylamine N-acetyltransferase; EC 2.3.1.5; NAT) activity produced by administration of catecholamines to the intact animal or to pineals in organ culture. The time required for development of this decrease in sensitivity varies inversely with age at treatment. A minimal dose of 200 micrograms of hydrocortisone acetate/rat is required to elicit this decreased response to agonist. Other glucocorticoids have qualitative effects similar to hydrocortisone acetate, but cholesterol and the gonadal steroids testosterone, estradiol, and progesterone are without effect. In addition to showing a smaller rise in NAT activity on stimulation, pineals from steroid-treated neonates also synthesize less N-acetylserotonin and melatonin from tryptophan. The decrease in NAT response to stimulation after steroid treatment appears due to actions beyond cyclic AMP generation and may involve inhibition of protein synthesis.  相似文献   

6.
Cyclic AMP is a key regulator of melatonin production in the chick pineal gland. Agents that raise cyclic AMP levels (such as forskolin), or cyclic AMP analogues (such as 8-bromocyclic AMP), increase melatonin synthesis and release, whereas agents that lower cyclic AMP levels (including light) decrease melatonin synthesis and release. A circadian oscillator in these cells also raises and lowers melatonin output. We have been investigating the relationships between cyclic AMP and the circadian pacemaker in the regulation of melatonin production. In the chick pineal (unlike certain neuronal systems), the weight of the evidence indicates that cyclic AMP is not on an entrainment pathway to the circadian pacemaker. Instead, cyclic AMP appears to act downstream from the pacemaker. The pacemaker might itself act directly through cyclic AMP, regulating melatonin content by raising and lowering cyclic AMP levels. If this were the case, and if the effects of cyclic AMP levels on melatonin output are saturable (as they must be), then, in the face of such saturating levels of cyclic AMP, the pacemaker should no longer raise or lower melatonin output. To test this prediction, maximally effective concentrations of forskolin and 8-bromocyclic AMP were determined. Both agents markedly increased melatonin output. After 36 hr, cells were refractory to additional stimulation of melatonin output by addition of both agents together, or by higher concentrations of forskolin (although cyclic AMP levels could still be raised further). Nonetheless, the circadian pacemaker continued to raise and lower melatonin output: The rhythm persisted in the face of saturating levels of cyclic AMP. It is therefore suggested that the circadian pacemaker in chick pineal cells acts with, not through, cyclic AMP to regulate melatonin synthesis. Cyclic AMP and the pacemaker act synergistically to regulate serotonin N-acetyltransferase activity and the melatonin rhythm, with cyclic AMP mediating acute effects and amplitude regulation.  相似文献   

7.
8.
Melatonin production in the pineal gland is high at night and low during the day. This rhythm reflects circadian changes in the activity of serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AA-NAT); EC 2.3.1.87], the penultimate enzyme in melatonin synthesis. The rhythm is generated by an endogenous circadian clock. In the chick, a clock is located in the pinealocyte, which also contains two phototransduction systems. One controls melatonin production by adjusting the clock and the other acts distal to the clock, via cyclic AMP mechanisms, to switch melatonin synthesis on and off. Unlike the clock in these cells, cyclic AMP does not appear to regulate activity by altering AA-NAT mRNA levels. The major changes in AA-NAT mRNA levels induced by the clock seemed likely (but not certain) to generate comparable changes in AA-NAT protein levels and AA-NAT activity. Cyclic AMP might also regulate AA-NAT activity via changes in protein levels, or it might act via other mechanisms, including posttranslational changes affecting activity. We measured AA-NAT protein levels and enzyme activity in cultured chick pineal cells and found that they correlated well under all conditions. They rose and fell spontaneously with a circadian rhythm. They also rose in response to agents that increase cyclic AMP. They were raised by agents that increase cyclic AMP, such as forskolin, and lowered by agents that decrease cyclic AMP, such as light and norepinephrine. Thus, both the clock and cyclic AMP can control AA-NAT activity by altering the total amount of AA-NAT protein. Effects of proteosomal proteolysis inhibitors suggest that changes in AA-NAT protein levels, in turn, reflect changes in the rate at which the protein is destroyed by proteosomal proteolysis. It is likely that cyclic AMP-induced changes in AA-NAT protein levels mediate rapid changes in chick pineal AA-NAT activity. Our results indicate that light can rapidly regulate the abundance of a specific protein (AA-NAT) within a photoreceptive cell.  相似文献   

9.
Alanine-2-oxoglutarate aminotransferase activity in mouse liver is stimulated by the intravenous injection of glucagon. The stimulation is abolished by pretreatment with actinomycin D indicating that the increased activity is probably due to new enzyme formation. Administration of dibutyryl cyclic AMP, isoproterenol, an activator of adenyl cyclase and theophylline, an inhibitor of phosphodiesterase also increases the enzyme activity suggesting the involvement of cyclic AMP in glucagon-mediated increase of enzyme activity.  相似文献   

10.
Arylalkylamine N-acetyltransferase controls daily changes in melatonin production by the pineal gland and thereby plays a unique role in biological timing in vertebrates. Arylalkylamine N-acetyltransferase is also expressed in the retina, where it may play other roles in addition to signaling, including neurotransmission and detoxification. Large changes in activity reflect cyclic 3',5'-adenosine monophosphate-dependent phosphorylation of arylalkylamine N-acetyltransferase, leading to formation of a regulatory complex with 14-3-3 proteins. This activates the enzyme and prevents proteosomal proteolysis. The conserved features of regulatory systems that control arylalkylamine N-acetyltransferase are a circadian clock and environmental lighting.  相似文献   

11.
12.
13.
Arylalkylamine N-acetyltransferase (serotonin N-acetyltransferase, AANAT, EC ) is the penultimate enzyme in melatonin synthesis. As described here, a cell line (1E7) expressing human AANAT (hAANAT) has been developed to study the human enzyme. 1E7 hAANAT is detectable in immunoblots as a 23-kDa band and is immunocytochemically visualized in the cytoplasm. The specific concentration of hAANAT in homogenates is comparable to that of the night rat pineal gland. Kinetics of AANAT extracted from 1E7 cells are the same as those of bacterially expressed hAANAT; both preparations of hAANAT are equally sensitive to the inhibitor CoA-S-N-acetyltryptamine. Studies of cAMP regulation indicate that treatment with forskolin, dibutyryl cAMP, isobutylmethylxanthine, or isoproterenol activate cellular hAANAT within intact 1E7 cells approximately 8-fold without markedly increasing the abundance of AANAT protein or the activity of AANAT in broken cell preparations; and, that forskolin, isobutylmethylxanthine and isoproterenol elevate cyclic AMP production. These observations extend our understanding of cAMP regulation of AANAT activity, because it is currently thought that this only involves changes in the steady-state levels of AANAT protein. This previously unrecognized switching mechanism could function physiologically to control melatonin production without changing AANAT protein levels.  相似文献   

14.
15.
Thyroxine 5'-deiodinase was increased by isoproterenol and dibutyryl adenosine cyclic 3',5'-monophosphate in a dose- and time-related manner in cultured rat pineal gland. Basal and stimulated activity was higher in glands from hypothyroid than from euthyroid animals. Our data suggest direct beta-adrenergic stimulation of intracellular cyclic AMP may be involved in the regulation of pineal thyroxine 5'-deiodinase activity.  相似文献   

16.
17.
P M Iuvone 《Life sciences》1986,38(4):331-342
The regulation of serotonin N-acetyltransferase (NAT) activity and cyclic AMP accumulation in the retina of the African clawed frog (Xenopus laevis) was studied using an in vitro eye cup preparation. Retinal NAT, a key enzyme in the synthesis of melatonin, is expressed as a circadian rhythm with peak activity at night. The increase of NAT activity at night appears to be mediated by cyclic AMP and is suppressed by light. Dopamine inhibits the nocturnal increase of retinal NAT activity; approximately 80% inhibition was observed with 1 microM dopamine. Dopamine at 1 microM did not stimulate retinal cyclic AMP accumulation. The effect of dopamine on NAT activity was antagonized by the D2-selective receptor antagonists spiperone and metoclopramide, but not by the putative D1 selective antagonist SCH 23390. The nocturnal rise in NAT activity was inhibited by LY 171555, a putative D2 selective agonist, but not by SKF 38393, a putative D1 selective agonist. LY 171555 also decreased cyclic AMP accumulation in eye cups incubated under similar conditions. Dopamine inhibited the stimulation of NAT activity in light by 3-isobutylmethylxanthine, but not that by dibutyryl cyclic AMP, suggesting that dopamine acts by decreasing cyclic AMP formation in the NAT-containing cells. Thus, the effects of dopamine on NAT activity may be mediated by a receptor with the pharmacological and biochemical characteristics of a D2 receptor.  相似文献   

18.
Summary In the Djungarian hamster seasonal acclimatization is primarily controlled by photoperiod, but exposure to low ambient temperature amplifies the intensity and duration of short day-induced winter adaptations. The aim of this study was to test, whether the pineal gland is involved in integrating both environmental cues. Exposure of hamsters to cold (0 °C) reduces the sensitivity of the pineal gland to light at night and prevents inactivation of N-acetyltransferase (NAT). The parallel time course of NAT activity and plasma norepinephrine content suggests that circulating catecholamines may stimulate melatonin synthesis under cold load.Abbreviations NAT N-acetyltransferase - NE norepinephrine - T a ambient temperature  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号