共查询到20条相似文献,搜索用时 15 毫秒
1.
Juan F. Codocedo Claudio Allard Juan A. Godoy Lorena Varela-Nallar Nibaldo C. Inestrosa 《PloS one》2012,7(10)
Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway. 相似文献
2.
Wang H Iacoangeli A Lin D Williams K Denman RB Hellen CU Tiedge H 《The Journal of cell biology》2005,171(5):811-821
Translational control at the synapse is thought to be a key determinant of neuronal plasticity. How is such control implemented? We report that small untranslated BC1 RNA is a specific effector of translational control both in vitro and in vivo. BC1 RNA, expressed in neurons and germ cells, inhibits a rate-limiting step in the assembly of translation initiation complexes. A translational repression element is contained within the unique 3′ domain of BC1 RNA. Interactions of this domain with eukaryotic initiation factor 4A and poly(A) binding protein mediate repression, indicating that the 3′ BC1 domain targets a functional interaction between these factors. In contrast, interactions of BC1 RNA with the fragile X mental retardation protein could not be documented. Thus, BC1 RNA modulates translation-dependent processes in neurons and germs cells by directly interacting with translation initiation factors. 相似文献
3.
Eun-Hye Hong Ji-Ye Kim Jeong-Hoon Kim Dae-Sik Lim Minkyu Kim Jeong-Yoon Kim 《Molecular neurobiology》2018,55(10):7701-7716
Proper dendrite development is essential for establishing neural circuitry, and Rho GTPases play key regulatory roles in this process. From mouse brain lysates, we identified Brefeldin A-inhibited guanine exchange factor 2 (BIG2) as a novel Rho GTPase regulatory protein involved in dendrite growth and maintenance. BIG2 was highly expressed during early development, and knockdown of the ARFGEF2 gene encoding BIG2 significantly reduced total dendrite length and the number of branches. Expression of the constitutively active ADP-ribosylation factor 1 ARF1 Q71L rescued the defective dendrite morphogenesis of ARFGEF2-null neurons, indicating that BIG2 controls dendrite growth and maintenance by activating ARF1. Moreover, BIG2 co-localizes with the Golgi apparatus and is required for Golgi deployment into major dendrites in cultured hippocampal neurons. Simultaneous overexpression of BIG2 and ARF1 activated RhoA, and treatment with the RhoA activator lysophosphatidic acid in neurons lacking BIG2 or ARF1 increased the number of cells with dendritic Golgi, suggesting that BIG2 and ARF1 activate RhoA to promote dendritic Golgi polarization. mDia1 was identified as a downstream effector of BIG2-ARF1-RhoA axis, mediating Golgi polarization and dendritic morphogenesis. Furthermore, in utero electroporation of ARFGEF2 shRNA into the embryonic mouse brain confirmed an in vivo role of BIG2 for Golgi deployment into the apical dendrite. Taken together, our results suggest that BIG2-ARF1-RhoA-mDia1 signaling regulates dendritic Golgi polarization and dendrite growth and maintenance in hippocampal neurons. 相似文献
4.
Yohei Wakita Tetsuhiro Kakimoto Hironori Katoh Manabu Negishi 《The Journal of biological chemistry》2011,286(37):32672-32683
Pombe Cdc15 homology proteins, characterized by Fer/CIP4 homology Bin-Amphiphysin-Rvs/extended Fer/CIP4 homology (F-BAR/EFC) domains with membrane invaginating property, play critical roles in a variety of membrane reorganization processes. Among them, Rapostlin/formin-binding protein 17 (FBP17) has attracted increasing attention as a critical coordinator of endocytosis. Here we found that Rapostlin was expressed in the developing rat brain, including the hippocampus, in late developmental stages when accelerated dendritic spine formation and maturation occur. In primary cultured rat hippocampal neurons, knockdown of Rapostlin by shRNA or overexpression of Rapostlin-QQ, an F-BAR domain mutant of Rapostlin that has no ability to induce membrane invagination, led to a significant decrease in spine density. Expression of shRNA-resistant wild-type Rapostlin effectively restored spine density in Rapostlin knockdown neurons, whereas expression of Rapostlin deletion mutants lacking the protein kinase C-related kinase homology region 1 (HR1) or Src homology 3 (SH3) domain did not. In addition, knockdown of Rapostlin or overexpression of Rapostlin-QQ reduced the uptake of transferrin in hippocampal neurons. Knockdown of Rnd2, which binds to the HR1 domain of Rapostlin, also reduced spine density and the transferrin uptake. These results suggest that Rapostlin and Rnd2 cooperatively regulate spine density. Indeed, Rnd2 enhanced the Rapostlin-induced tubular membrane invagination. We conclude that the F-BAR protein Rapostlin, whose activity is regulated by Rnd2, plays a key role in spine formation through the regulation of membrane dynamics. 相似文献
5.
The equilibrium potential for GABA-A receptor mediated currents (EGABA) in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2) but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1). Theta-burst stimulation (TBS) in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined. Metabotropic glutamate receptors (mGluRs) are suggested to modulate KCC2 and NKCC1 levels in cortical neurons. Therefore, the involvement of mGluRs in the regulation of KCC2 or NKCC1 activity, and thus EGABA, following TBS was also investigated. Whole-cell patch recordings were made from Wistar rat hippocampal CA1 pyramidal neurons, in a slice preparation. In neonates, TBS induces a positive shift in EGABA, which was prevented by NKCC1 antisense but not NKCC1 sense mRNA. (RS)-a-Methyl-4-carboxyphenylglycine (MCPG), a group I and II mGluR antagonist, blocked TBS-induced shifts in both juvenile and neonatal hippocampal neurons. While blockade of mGluR1 or mGluR5 alone could interfere with TBS-induced shifts in EGABA in neonates, only a combined blockade could do the same in juveniles. These results indicate that TBS induces a negative shift in EGABA in juvenile hippocampal neurons but a positive shift in neonatal hippocampal neurons via corresponding changes in KCC2 and NKCC1 expressions, respectively. mGluR activation seems to be necessary for both shifts to occur while the specific receptor subtype involved seems to vary. 相似文献
6.
罗格列酮(rosiglitazone,Rosig.)是噻唑烷二酮类(thiazolidinediones,TZDs)过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma,PPARγ)的激动剂,近年来,临床研究发现其具有神经保护作用,但对其作用机制目前仍没有完全研究清楚.利用活细胞成像的方法,观察罗格列酮对大鼠海马神经元树突丝和树突树发育的影响及其机制.结果显示,罗格列酮浓度依赖的增高神经元树突丝密度,对树突丝长度、运动速度并没有影响.此外,罗格列酮也不影响树突树的总分支、总长度以及各级分支的数目和长度.PPARγ 特异性拮抗剂GW9662完全阻断了罗格列酮介导的树突丝密度增高.结果表明罗格列酮可能通过PPARγ途径影响神经元的早期发育,这可能是罗格列酮发挥神经保护作用的潜在机制. 相似文献
7.
Imaging Dendritic Spines of Rat Primary Hippocampal Neurons using Structured Illumination Microscopy
Marijn Schouten Giulia M. R. De Luca Diana K. Alatriste González Babette E. de Jong Wendy Timmermans Hui Xiong Harm Krugers Erik M. M. Manders Carlos P. Fitzsimons 《Journal of visualized experiments : JoVE》2014,(87)
Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light''s intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy''s theoretical resolution limit of 200 nm.Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the protocol, dendritic spines can be reconstructed in 3D from series of SIM image stacks using specialized software. 相似文献
8.
9.
Changes in neuronal activity modify the structure of dendritic spines and alter the function and protein composition of synapses. Regulated degradation of postsynaptic density (PSD) proteins by the ubiquitin-proteasome system is believed to play an important role in activity-dependent synaptic remodeling. Stimulating neuronal activity in vitro and in vivo induces the ubiquitination and degradation of GKAP/SAPAP and Shank, major scaffold proteins of the PSD. However, the specific ubiquitin ligases that regulate postsynaptic protein composition have not been identified. Here we identify the RING finger-containing protein TRIM3 as a specific E3 ubiquitin ligase for the PSD scaffold GKAP/SAPAP1. Present in PSD fractions from rat brain, TRIM3 stimulates ubiquitination and proteasome-dependent degradation of GKAP, and induces the loss of GKAP and associated scaffold Shank1 from postsynaptic sites. Suppression of endogenous TRIM3 by RNA interference (RNAi) results in increased accumulation of GKAP and Shank1 at synapses, as well as enlargement of dendritic spine heads. RNAi of TRIM3 also prevented the loss of GKAP induced by synaptic activity. Thus, TRIM3 is a novel E3 ligase that mediates activity-dependent turnover of PSD scaffold proteins and is a negative regulator of dendritic spine morphology. 相似文献
10.
11.
Translation of mRNA in axons and dendrites enables a rapid supply of proteins to specific sites of localization within the neuron. Distinct mRNA-containing cargoes, including granules and mitochondrial mRNA, are transported within neuronal projections. The distributions of these cargoes appear to change during neuronal development, but details on the dynamics of mRNA transport during these transitions remain to be elucidated. For this study, we have developed imaging and image processing methods to quantify several transport parameters that can define the dynamics of RNA transport and localization. Using these methods, we characterized the transport of mitochondrial and non-mitochondrial mRNA in differentiated axons and dendrites of cultured hippocampal neurons varying in developmental maturity. Our results suggest differences in the transport profiles of mitochondrial and non-mitochondrial mRNA, and differences in transport parameters at different time points, and between axons and dendrites. Furthermore, within the non-mitochondrial mRNA pool, we observed two distinct populations that differed in their fluorescence intensity and velocity. The net axonal velocity of the brighter pool was highest at day 7 (0.002±0.001 µm/s, mean ± SEM), raising the possibility of a presynaptic requirement for mRNA during early stages of synapse formation. In contrast, the net dendritic velocity of the brighter pool increased steadily as neurons matured, with a significant difference between day 12 (0.0013±0.0006 µm/s ) and day 4 (−0.003±0.001 µm/s) suggesting a postsynaptic role for mRNAs in more mature neurons. The dim population showed similar trends, though velocities were two orders of magnitude higher than of the bright particles. This study provides a baseline for further studies on mRNA transport, and has important implications for the regulation of neuronal plasticity during neuronal development and in response to neuronal injury. 相似文献
12.
The physiological properties of hippocampal neurons are commonly investigated, especially because of the involvement of the hippocampus in learning and memory. Primary hippocampal cell culturing allows neuroscientists to examine the activity and properties of neurons at the individual cell and single synapse level. In this video, we will demonstrate how to isolate and grow primary hippocampal cells from newborn rats. The hippocampus may be isolated from each newborn animal in as short as 2 to 3 minutes, and the cultures can be maintained for up to two weeks. We will also briefly demonstrate how to use these hippocampal neurons for ratiometric calcium imaging. While this protocol describes the process for the hippocampus, with little to no modification, it can be applied to other regions of the brain.Open in a separate windowClick here to view.(46M, flv) 相似文献
13.
BC1 RNA is a dendritic untranslated RNA that has been implicated in local translational control mechanisms in neurons. Prerequisite for a functional role of the RNA in synaptodendritic domains is its targeted delivery along the dendritic extent. We report here that the targeting-competent 5' BC1 domain carries two dendritic targeting codes. One code, specifying somatic export, is located in the medial-basal region of the 5' BC1 stem-loop structure. It is defined by an export-determinant stem-bulge motif. The second code, specifying long-range dendritic delivery, is located in the apical part of the 5' stem-loop domain. This element features a GA kink-turn (KT) motif that is indispensable for distal targeting. It specifically interacts with heterogeneous nuclear ribonucleoprotein A2, a trans-acting targeting factor that has previously been implicated in the transport of MBP mRNA in oligodendrocytes and neurons. Our work suggests that a BC1 KT motif encodes distal targeting via the A2 pathway and that architectural RNA elements, such as KT motifs, may function as spatial codes in neural cells. 相似文献
14.
In order to develop a simplified method for long-term primary culture of highly-pure rat embryonic hippocampal neurons of
low-density (103 cells/cm2), we optimized and modified conventional culturing methods. The modifications of our simplified method include: (1) combinational
application of two growth substrates, tail collagen and poly-L-lysine, to coat plastic culture dishes and coverslips for a
better neuronal attachment; (2) dissociation of hippocampal tissues with combinational use of two milder enzymes (collagenase
and dispase) and trypsin of a lower concentration to minimize enzymatic damages to cultured neurons; (3) a cell pre-plating
step to preliminarily eliminate the contaminating non-neuronal cells; (4) a modified culture medium as a critical step to
promote highly pure neurons of low-density for a long term; and (5) appropriately reduced frequency and volume of refreshment
of the culture medium. Using our modified method, the β-tubulin III-immunostained and Hoechst 33342 counterstained neurons
harvested a steady and healthy growth with a longer culture time of over 35 days, and a clear distinction between TAU-1- and
MAP2-immunoreactive neurites was apparent at the early culturing period. In addition, the purity of neurons was over 95% at
the different time points in comparison with the control culture using conventional serum-free method in which most neurons
degenerated and died within 5 days. Thus, our modified method proved to be a simple, feasible as well as time- and resource-saving
approach for a long-term survival of pure rat embryonic hippocampal neurons of low-density. 相似文献
15.
16.
Christopher Viesselmann Jason Ballweg Derek Lumbard Erik W. Dent 《Journal of visualized experiments : JoVE》2011,(47)
Hippocampal and cortical neurons have been used extensively to study central nervous system (CNS) neuronal polarization, axon/dendrite outgrowth, and synapse formation and function. An advantage of culturing these neurons is that they readily polarize, forming distinctive axons and dendrites, on a two dimensional substrate at very low densities. This property has made them extremely useful for determining many aspects of neuronal development. Furthermore, by providing glial conditioning for these neurons they will continue to develop, forming functional synaptic connections and surviving for several months in culture. In this protocol we outline a technique to dissect, culture and transfect embryonic mouse hippocampal and cortical neurons. Transfection is accomplished by electroporating DNA into the neurons before plating via nucleofection. This protocol has the advantage of expressing fluorescently-tagged fusion proteins early in development (~4-8hrs after plating) to study the dynamics and function of proteins during polarization, axon outgrowth and branching. We have also discovered that this single transfection before plating maintains fluorescently-tagged fusion protein expression at levels appropriate for imaging throughout the lifetime of the neuron (> 2 months in culture). Thus, this methodology is useful for studying protein localization and function throughout CNS development with little or no disruption of neuronal function. 相似文献
17.
Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility. 相似文献
18.
19.
Anna R. Malik Malgorzata Urbanska Agata Gozdz Lukasz J. Swiech Andrzej Nagalski Malgorzata Perycz Magdalena Blazejczyk Jacek Jaworski 《The Journal of biological chemistry》2013,288(12):8544-8559
The shape of the dendritic arbor is one of the criteria of neuron classification and reflects functional specialization of particular classes of neurons. The development of a proper dendritic branching pattern strongly relies on interactions between the extracellular environment and intracellular processes responsible for dendrite growth and stability. We previously showed that mammalian target of rapamycin (mTOR) kinase is crucial for this process. In this work, we performed a screen for modifiers of dendritic growth in hippocampal neurons, the expression of which is potentially regulated by mTOR. As a result, we identified Cyr61, an angiogenic factor with unknown neuronal function, as a novel regulator of dendritic growth, which controls dendritic growth in a β1-integrin-dependent manner. 相似文献
20.
Dendritic spines are small protrusions that receive synapses, and changes in spine morphology are thought to be the structural basis for learning and memory. We demonstrate that the cell surface heparan sulfate proteoglycan syndecan-2 plays a critical role in spine development. Syndecan-2 is concentrated at the synapses, specifically on the dendritic spines of cultured hippocampal neurons, and its accumulation occurs concomitant with the morphological maturation of spines from long thin protrusions to stubby and headed shapes. Early introduction of syndecan-2 cDNA into immature hippocampal neurons, by transient transfection, accelerates spine formation from dendritic protrusions. Deletion of the COOH-terminal EFYA motif of syndecan-2, the binding site for PDZ domain proteins, abrogates the spine-promoting activity of syndecan-2. Syndecan-2 clustering on dendritic protrusions does not require the PDZ domain-binding motif, but another portion of the cytoplasmic domain which includes a protein kinase C phosphorylation site. Our results indicate that syndecan-2 plays a direct role in the development of postsynaptic specialization through its interactions with PDZ domain proteins. 相似文献