首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Zhang GL  Wang CW  Li C 《Biotechnology letters》2012,34(8):1519-1523
The budC gene encoding the meso-2,3-BDH from Klebsiella pneumoniae XJ-Li was expressed in E. coli BL21 (DE3) pLys. Hypothetical amino acid sequence alignments revealed that the enzyme belongs to the short chain dehydrogenase/reductase family. After purification and refolding, the recombinant enzyme had activities of 218 U/mg for reduction of acetoin and 66 U/mg for oxidation of meso-2,3-butanediol. Highest activities were at pH 8.0 and 9.0 respectively. These are higher than other meso-2,3-butanediol dehydrogenases from K. pneumoniae. The low K (m) value (0.65 mM) for acetoin indicated that the enzyme can easily reduce acetoin to meso-2,3-butanediol. There were no significant activities towards 2R,3R-2,3-butanediol, 1,4-butanediol and 2S,3S-2,3-butanediol, suggesting that the enzyme has a high stereospecificity for the meso-dihydric alcohol.  相似文献   

2.
A (2R,3R)-2,3-butanediol dehydrogenase (BDH99::67) from Paenibacillus polymyxa ATCC 12321 was functionally characterized. The genetic characteristics of BDH99::67 are completely different from those of meso- and (2S,3S)-2,3-butanediol dehydrogenases. The results showed that BDH99::67 belongs to the medium-chain dehydrogenase/reductase superfamily and not to the short-chain dehydrogenase/reductase superfamily, to which meso- and (2S,3S)-2,3-butanediol dehydrogenases belong.  相似文献   

3.
2,3-Butanediol dehydrogenase (BDH) catalyzes the NAD-dependent redox reaction between acetoin and 2,3-butanediol. There are three types of homologous BDH, each stereospecific for both substrate and product. To establish how these homologous enzymes possess differential stereospecificities, we determined the crystal structure of l-BDH with a bound inhibitor at 2.0 Å. Comparison with the inhibitor binding mode of meso-BDH highlights the role of a hydrogen-bond from a conserved Trp residue192. Site-directed mutagenesis of three active site residues of meso-BDH, including Trp190, which corresponds to Trp192 of l-BDH, converted its stereospecificity to that of l-BDH. This result confirms the importance of conserved residues in modifying the stereospecificity of homologous enzymes.  相似文献   

4.
The present work aims to block 2,3-butanediol synthesis in acetoin fermentation of Bacillus subtilis. First, we constructed a recombinant strain BS168D by deleting the 2,3-butanediol dehydrogenase gene bdhA of the B. subtilis168, and there was almost no 2,3-butanediol production in 20?g/L of glucose media. The acetoin yield of BS168D reached 6.61?g/L, which was about 1.5 times higher than that of the control B. subtilis168 (4.47?g/L). Then, when the glucose concentration was increased to 100?g/L, the acetoin yield reached 24.6?g/L, but 2.4?g/L of 2,3-butanediol was detected at the end of fermentation. The analysis of 2,3-butanediol chiral structure indicated that the main 2,3-butanediol production of BS168D was meso-2,3-butanediol, and the bdhA gene was only responsible for (2R,3R)-2,3-butanediol synthesis. Therefore, we speculated that there may exit another pathway relating to the meso-2,3-butanediol synthesis in the B. subtilis. In addition, the results of low oxygen condition fermentation showed that deletion of bdhA gene successfully blocked the reversible transformation between acetoin and 2,3-butanediol and eliminated the effect of dissolved oxygen on the transformation.  相似文献   

5.
Bovine liver glutamate dehydrogenase reacts rapidly with 2,3-butanedione to yield modified enzyme with 29% of its original maximum activity, but no change in its Michaelis constants for substrates and coenzymes. No significant reduction in the inactivation rate is produced by the addition of the allosteric activator ADP or inhibitor GTP, while partial protection against inactivation is provided by the coenzyme NAD+ or substrate 2-oxoglutarate when added separately. The most marked decrease in the rate of inactivation (about 10-fold) is provided by the combined addition of NAD+ and 2-oxoglutarate, suggesting that modification takes place in the region of the active site. Reaction with 2,3-butanedione also results in loss of the ability of the enzyme to be activated by ADP. Addition of ADP (but not NAD+, 2-oxoglutarate or GTP) to the incubation mixture protects markedly against the loss of activatability of ADP. It is concluded that 2,3-butanedione produces two distinguishable effects on glutamate dehydrogenase: a relatively specific modification of the regulatory ADP site and a distinct modification in the active center. Reaction of two arginyl residues per peptide chain appears to be responsible for disruption of the ADP activation property of the enzyme, while alteration of a maximum of five arginyl residues can be related to the reduction of maximum catalytic activity. Electrostatic interactions between the positively charged arginine groups and the negatively charged substrate, coenzyme and allosteric purine nucleotide may be important for the normal function of glutamate dehydrogenase.  相似文献   

6.
We present an assay for 2,3-butanediol by gas chromatography-mass spectrometry of its trimethylsilyl ethers. 2R,3R- and/or 2S,3S-2,3-butanediol and meso-2,3-butanediol are quantitated with corresponding internal standards of [2,3-2H2]butanediol. Limits of detection are 1 and 0.1 microM for split and splitless injections, respectively. Blood concentrations of 2,3-butanediol in nonalcoholics are 0.5 +/- 0.3 (SD) microM for 2R,3R- and/or 2S,3S-2,3-butanediol and 0.8 +/- 0.4 microM for meso-2,3-butanediol (n = 9). Two hours after alcohol ingestion, blood levels had risen in eight of nine subjects to 1.2 +/- 0.7 microM for 2R,3R-/2S,3S-2,3-butanediol and to 1.2 +/- 0.6 microM for meso-2,3-butanediol. Baseline urinary excretion of 2,3-butanediol is 0.4 +/- 0.2 mumol/mmol creatinine for 2R,3R-/2S,3S-2,3-butanediol and 0.9 +/- 0.5 mumol/mmol creatinine for meso-2,3-butanediol.  相似文献   

7.
J C Tang  R G Forage    E C Lin 《Journal of bacteriology》1982,152(3):1169-1174
An NAD+-linked glycerol dehydrogenase hyperproduced by a mutant of Escherichia coli K-12 was found to be immunochemically homologous to a minor glycerol dehydrogenase of unknown physiological function in Klebsiella pneumoniae 1033, but not to the glycerol dehydrogenase of the dha system responsible for anaerobic dissimilation of glycerol or to the 2,3-butanediol dehydrogenase of K. pneumoniae.  相似文献   

8.
cis-Biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (BphB) is involved in the aerobic biodegradation of polychlorinated biphenyls (PCBs). The crystal structure of the NAD+-enzyme complex was determined by molecular replacement and refined to an R-value of 17.9% at 2.0 A. As a member of the short-chain alcohol dehydrogenase/reductase (SDR) family, the overall protein fold and positioning of the catalytic triad in BphB are very similar to those observed in other SDR enzymes, although small differences occur in the cofactor binding site. Modeling studies indicate that the substrate is bound in a deep hydrophobic cleft close to the nicotinamide moiety of the NAD+ cofactor. These studies further suggest that Asn143 is a key determinant of substrate specificity. A two-step reaction mechanism is proposed for cis-dihydrodiol dehydrogenases.  相似文献   

9.
A NAD (P)-linked alcohol dehydrogenase was isolated from the soluble extract of the strictly respiratory bacterium Alcaligenes eutrophus N9A. Derepression of the formation of this enzyme occurs only in cells incubated under conditions of restricted oxygen supply for prolonged times. The purification procedure included precipitation by cetyltrimethylammonium bromide and ammonium sulfate and subsequent chromatography on DEAE-Sephacel, Cibacron blue F3G-A Sepharose and thiol-Sepharose. The procedure resulted in a 120-fold purification of a multifunctional alcohol dehydrogenase exhibiting dehydrogenase activities for 2,3-butanediol, ethanol and acetaldehyde and reductase activities for diacetyl, acetoin and acetaldehyde. During purification the ratio between 2,3-butanediol dehydrogenase and ethanol dehydrogenase activity remained nearly constant. Recovering about 20% of the initial 2,3-butanediol dehydrogenase activity, the specific activity of the final preparation was 70.0 U X mg protein-1 (2,3-butanediol oxidation) and 2.8 U X mg protein-1 (ethanol oxidation). The alcohol dehydrogenase is a tetramer of a relative molecular mass of 156000 consisting of four equal subunits. The determination of the Km values for different substrates and coenzymes as well as the determination of the pH optima for the reactions catalyzed resulted in values which were in good agreement with the fermentative function of this enzyme. The alcohol dehydrogenase catalyzed the NAD (P)-dependent dismutation of acetaldehyde to acetate and ethanol. This reaction was studied in detail, and its possible involvement in acetate formation is discussed. Among various compounds tested for affecting enzyme activity only NAD, NADP, AMP, ADP, acetate and 2-mercaptoethanol exhibited significant effects.  相似文献   

10.
Using a conserved sequence motif, a new gene (YAL060W) of the MDR family has been identified in Saccharomyces cerevisiae. The expressed protein was a stereoespecific (2R,3R)-2,3-butanediol dehydrogenase (BDH). The best substrates were (2R,3R)-2,3-butanediol for the oxidation and (3R/3S)-acetoin and 1-hydroxy-2-propanone for the reduction reactions. The enzyme is extremely specific for NAD(H) as cofactor, probably because the presence of Glu223 in the cofactor binding site, instead of the highly conserved Asp223. BDH is inhibited competitively by 4-methylpyrazole with a K(i) of 34 microM. Yeast could grow on 2,3-butanediol or acetoin as a sole energy and carbon sources, and a 3.6-fold increase in BDH activity was observed when cells were grown in 2,3-butanediol, suggesting a role of the enzyme in 2,3-butanediol metabolism. However, the disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions, and the disrupted strain could also grow in 2,3-butanediol and acetoin. This suggests that other enzymes, in addition to BDH, can also metabolize 2,3-butanediol in yeast.  相似文献   

11.
2,3-butanediol dehydrogenase (BDH, EC 1.1.1.76) also known as acetoin reductase (AR, EC 1.1.1.4) is the key enzyme converting acetoin (AC) into 2,3-butanediol (BD) and undertaking the irreversible conversion of diacetyl to acetoin in various microorganisms. The existence of three BDHs (R,R-, meso-, and S,S-BDH) product different BD isomers. Catalyzing mechanisms of meso- and S,S-BDH have been understood with the assistance of their X-ray crystal structures. However, the lack of structural data for R,R-BDH restricts the integral understanding of the catalytic mechanism of BDHs. In this study, we successfully crystallized and solved the X-ray crystal structure of Bacillus subtilis R,R-BDH. A zinc ion was found locating in the catalytic center and coordinated by Cys37, His70 and Glu152, helping to stabilize the chiral substrates observed in the predicted molecular docking model. The interaction patterns of different chiral substrates in the molecular docking model explained the react priority measured by the enzyme activity assay of R,R-BDH. Site-directed mutation experiments determined that the amino acids Cys37, Thr244, Ile268 and Lys340 are important in the catalytically active center. The structural information of R,R-BDH presented in this study accomplished the understanding of BDHs catalytic mechanism and more importantly provides useful guidance for the directional engineering of R,R-BDH to obtain high-purity monochiral BD and AC.  相似文献   

12.
L-Acetoin (L-AC) was produced from diacetyl (DA) by Escherichia coli JM109/pBUD119 containing the meso-2,3-butanediol dehydrogenase (D-AC forming) gene. However, when the strain was cultured in the presence of isopropyl-beta-D-thiogalacto-pyranoside, the enzyme formed catalysed not only D-AC but also L-AC. L-AC was further reduced to L-2,3-butanediol (BD). The yield of L-AC or L-BD from DA (3 gl-1) was about 70% (w/w).  相似文献   

13.
Homoisocitrate dehydrogenase (HICDH) is involved in the α-aminoadipate pathway of lysine biosynthesis in some bacteria and higher fungi, and catalyses the oxidative decarboxylation of (2R,3S)-homoisocitrate into 2-ketoadipate using NAD(+) as a coenzyme. In this study, the crystal structure of Thermus thermophilus HICDH in a binary complex with a designed inhibitor, (2S,3S)-thiahomoisocitrate, has been determined at 2.6 ? resolution. The inhibitor observed as a decarboxylated product interacts through hydrogen bonding to Arg 118, Tyr 125 and Lys 171 in the active site. The induced fitting was also observed around the region consisting of residues 120-141, which shifted up to 2.8 ? towards the active site. In addition, it was found that the complex structure adopts a closed conformation in two domains. While the structure of apo-HICDH shows that a catalytic residue Tyr 125 and Arg 85 that engages in substrate recognition are flipped out of the active site, these residues turn towards the active site in the complex structure. The results revealed that they directly interact with a substrate and are involved in catalysis or substrate recognition. Furthermore, by comparing the binary complex with the quaternary complex of Escherichia coli isocitrate dehydrogenase, the substrate recognition mechanism of HICDH is also discussed.  相似文献   

14.
Incubation of homogeneous preparations of L-threonine dehydrogenase from Escherichia coli with 2,3-butanedione, 2,3-pentanedione, phenylglyoxal, or 1,2-cyclohexanedione causes a time- and concentration-dependent loss of enzymatic activity; plots of log percent activity remaining versus time are linear to greater than 90% inactivation, indicative of pseudo-first order inactivation kinetics. The reaction order with respect to the concentration of modifying reagent is approximately 1.0 in each case suggesting that the loss of catalytic activity is due to one molecule of modifier reacting with each active unit of enzyme. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced nonspecific alteration of the dehydrogenase. Essentially the same Km but decreased Vmax values are obtained when partially inactivated enzyme is compared with native. NADH (25 mM) and NAD+ (70 mM) give full protection against inactivation whereas much higher concentrations (i.e. 150 mM) of L-threonine or L-threonine amide provide a maximum of 80-85% protection. Amino acid analyses coupled with quantitative sulfhydryl group determinations show that enzyme inactivated 95% by 2,3-butanedione loses 7.5 arginine residues (out of 16 total)/enzyme subunit with no significant change in other amino acid residues. In contrast, only 2.4 arginine residues/subunit are modified in the presence of 80 mM NAD+. Analysis of the course of modification and inactivation by the statistical method of Tsou (Tsou, C.-L. (1962) Sci. Sin. 11, 1535-1558) demonstrates that inactivation of threonine dehydrogenase correlates with the loss of 1 "essential" arginine residue/subunit which quite likely is located in the NAD+/NADH binding site.  相似文献   

15.
The enzyme prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate for the biosynthesis of tyrosine. Prephenate dehydrogenases exist as either monofunctional or bifunctional enzymes. The bifunctional enzymes are diverse, since the prephenate dehydrogenase domain is associated with other enzymes, such as chorismate mutase and 3-phosphoskimate 1-carboxyvinyltransferase. We report the first crystal structure of a monofunctional prephenate dehydrogenase enzyme from the hyper-thermophile Aquifex aeolicus in complex with NAD+. This protein consists of two structural domains, a modified nucleotide-binding domain and a novel helical prephenate binding domain. The active site of prephenate dehydrogenase is formed at the domain interface and is shared between the subunits of the dimer. We infer from the structure that access to the active site is regulated via a gated mechanism, which is modulated by an ionic network involving a conserved arginine, Arg250. In addition, the crystal structure reveals for the first time the positions of a number of key catalytic residues and the identity of other active site residues that may participate in the reaction mechanism; these residues include Ser126 and Lys246 and the catalytic histidine, His147. Analysis of the structure further reveals that two secondary structure elements, beta3 and beta7, are missing in the prephenate dehydrogenase domain of the bifunctional chorismate mutase-prephenate dehydrogenase enzymes. This observation suggests that the two functional domains of chorismate mutase-prephenate dehydrogenase are interdependent and explains why these domains cannot be separated.  相似文献   

16.
Using a conserved sequence motif, a new gene (YAL060W) of the MDR family has been identified in Saccharomyces cerevisiae. The expressed protein was a stereoespecific (2R,3R)-2,3-butanediol dehydrogenase (BDH). The best substrates were (2R,3R)-2,3-butanediol for the oxidation and (3R/3S)-acetoin and 1-hydroxy-2-propanone for the reduction reactions. The enzyme is extremely specific for NAD(H) as cofactor, probably because the presence of Glu223 in the cofactor binding site, instead of the highly conserved Asp223. BDH is inhibited competitively by 4-methylpyrazole with a Ki of 34 μM. Yeast could grow on 2,3-butanediol or acetoin as a sole energy and carbon sources, and a 3.6-fold increase in BDH activity was observed when cells were grown in 2,3-butanediol, suggesting a role of the enzyme in 2,3-butanediol metabolism. However, the disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions, and the disrupted strain could also grow in 2,3-butanediol and acetoin. This suggests that other enzymes, in addition to BDH, can also metabolize 2,3-butanediol in yeast.  相似文献   

17.
The enzyme 17beta-hydroxysteroid dehydrogenase type 10 (HSD10), also known as amyloid beta-peptide-binding alcohol dehydrogenase (ABAD), has been implicated in the development of Alzheimer's disease. This protein, a member of the short-chain dehydrogenase/reductase family of enzymes, has been shown to bind beta-amyloid and to participate in beta-amyloid neurotoxicity. We have determined the crystal structure of human ABAD/HSD10 complexed with NAD(+) and an inhibitory small molecule. The inhibitor occupies the substrate-binding site and forms a covalent adduct with the NAD(+) cofactor. The crystal structure provides a basis for the design of potent, highly specific ABAD/HSD10 inhibitors with potential application in the treatment of Alzheimer's disease.  相似文献   

18.
The crystal structure of malate dehydrogenase from Escherichia coli has been determined with a resulting R-factor of 0.187 for X-ray data from 8.0 to 1.87 A. Molecular replacement, using the partially refined structure of porcine mitochondrial malate dehydrogenase as a probe, provided initial phases. The structure of this prokaryotic enzyme is closely homologous with the mitochondrial enzyme but somewhat less similar to cytosolic malate dehydrogenase from eukaryotes. However, all three enzymes are dimeric and form the subunit-subunit interface through similar surface regions. A citrate ion, found in the active site, helps define the residues involved in substrate binding and catalysis. Two arginine residues, R81 and R153, interacting with the citrate are believed to confer substrate specificity. The hydroxyl of the citrate is hydrogen-bonded to a histidine, H177, and similar interactions could be assigned to a bound malate or oxaloacetate. Histidine 177 is also hydrogen-bonded to an aspartate, D150, to form a classic His.Asp pair. Studies of the active site cavity indicate that the bound citrate would occupy part of the site needed for the coenzyme. In a model building study, the cofactor, NAD, was placed into the coenzyme site which exists when the citrate was converted to malate and crystallographic water molecules removed. This hypothetical model of a ternary complex was energy minimized for comparison with the structure of the binary complex of porcine cytosolic malate dehydrogenase. Many residues involved in cofactor binding in the minimized E. coli malate dehydrogenase structure are homologous to coenzyme binding residues in cytosolic malate dehydrogenase. In the energy minimized structure of the ternary complex, the C-4 atom of NAD is in van der Waals' contact with the C-3 atom of the malate. A catalytic cycle involves hydride transfer between these two atoms.  相似文献   

19.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of the pathogenic protozoa Entamoeba histolytica (Eh) is a major glycolytic enzyme and an attractive drug target since this parasite lacks a functional citric acid cycle and is dependent solely on glycolysis for its energy requirements. The three-dimensional structure of dimeric EhGAPDH in complex with cofactor NAD(+) has been generated by homology modeling based on the crystal structure of human liver GAPDH. Our refined model indicates the presence of a parasite specific disulfide bond between two cysteine residues of adjacent monomers in the EhGAPDH dimer, which may be an important target for future drug design. Flexible docking with the substrate glyceraldehyde-3-phosphate (G3P) shows that Cys151, His178, Thr210, and Arg233 are important residues in G3P binding. The inorganic phosphate-binding site of EhGAPDH has been determined by docking study. The binding mode of a natural GAPDH inhibitor, chalepin to EhGAPDH has also been predicted. In search for a better inhibitor for EhGADPH, in silico modification of chalepin has been carried out to form an additional specific polar interaction with Asp194 of EhGAPDH whose equivalent is Leu195 in human GAPDH. In the absence of a crystal structure, our study provides an early insight into the structure of major drug target EhGAPDH, thus, facilitating the inhibitor design.  相似文献   

20.
Bacterial 2,3-butanediol dehydrogenases   总被引:3,自引:0,他引:3  
Enterobacter aerogenes, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus possessing L(+)-butanediol dehydrogenase produced mainly meso-butanediol and small amounts of optically active butanediol; Acetobacter suboxydans, Bacillus polymyxa and Erwinia carotovora containing D(-)-butanediol dehydrogenase produced more optically active butanediol than meso-butanediol. Resting and growing cells of these organisms oxidized only one enantiomer of racemic butanediol. The D(-)-butanediol dehydrogenase from Bacillus polymyxa was partially purified (30-fold) with a specific activity of 24.5. Except NAD and NADH no other cofactors were required. Optimum pH-values for oxidation and reduction were pH 9 and pH 7, respectively. The optimum temperature was about 60°C. The molecular weight was 100000 to 107000. The K m-values were 3.3 mM for D(-)-butanediol, 6.25 mM for meso-butanediol, 0.53 mM for acetoin, 0.2 mM for NAD, 0.1 mM for NADH, 87 mM for diacetyl, 38 mM for 1,2-propanediol; 2,3-pentanedion was not a substrate for this enzyme. The L(+)-butanediol dehydrogenase from Serratia marcescens was purified 57-fold (specific activity 22.3). Besides NAD or NADH no cofactors were required. The optimum value for oxidation was about pH 9 and for reduction pH 4.5. The optimum temperature was 32–36°C. The molecular weight was 100000 to 107000. The K m-values were 5 mM for meso-butanediol, 10 mM for racemic butanediol, 6.45 for acetoin, 1 mM for NAD, 0.25 mM for NADH, 2.08 mM for diacetyl, 16.7 mM for 2,3-pentanedion and 11.8 mM for 1,2-propanediol.Abbreviations Bud 2,3-butanediol - DH dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号