首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diadenosine 5',5'-P1,P4-tetraphosphate alpha,beta-phosphorylase (Ap4A phosphorylase), recently observed in yeast [Guaranowski, A., & Blanquet, S. (1985) J. Biol. Chem. 260, 3542-3547], is shown to be capable of catalyzing the synthesis of Ap4A from ATP + ADP, i.e., the reverse reaction of the phosphorolysis of Ap4A. The synthesis of Ap4A markedly depends on the presence of a divalent cation (Ca2+, Mn2+, or Mg2+). In vitro, the equilibrium constant K = ([Ap4A][Pi])/[(ATP][ADP]) is very sensitive to pH. Ap4A synthesis is favored at low pH, in agreement with the consumption of one to two protons when ATP + ADP are converted into Ap4A and phosphate. Optimal activity is found at pH 5.9. At pH 7.0 and in the presence of Ca2+, the Vm for Ap4A synthesis is 7.4 s-1 (37 degrees C). Ap4A phosphorylase is, therefore, a valuable candidate for the production of Ap4A in vivo. Ap4A phosphorylase is also capable of producing various Np4N' molecules from NTP and N'DP. The NTP site is specific for purine ribonucleotides (N = A, G), whereas the N'DP site has a broader specificity (N' = A, C, G, U, dA). This finding suggests that the Gp4N' nucleotides, as well as the Ap4N' ones, could occur in yeast cells.  相似文献   

2.
An enzyme able to cleave dinucleoside triphosphates has been purified 3,750-fold from Saccharomyces cerevisiae. Contrary to the enzymes previously shown to catabolize Ap4A in yeast, this enzyme is a hydrolase rather than a phosphorylase. The dinucleoside triphosphatase molecular ratio estimated by gel filtration is 55,000. Dinucleoside triphosphatase activity is strongly stimulated by the presence of divalent cations. Mn2+ displays the strongest stimulating effect, followed by Mg2+, Co2+, Cd2+, and Ca2+. The Km value for Ap3A is 5.4 microM (50 mM Tris-HCl [pH 7.8], 5 mM MgCl2, and 0.1 mM EDTA; 37 degrees C). Dinucleoside polyphosphates are substrates of this enzyme, provided that they contain more than two phosphates and that at least one of the two bases is a purine (Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, m7Gp3A, m7Gp3G, Ap4A, Ap4G, Ap4C, Ap4U, Gp4G, and Ap5A are substrates; AMP, ADP, ATP, Ap2A, and Cp4U are not). Among the products, a nucleoside monophosphate is always formed. The specificity of cleavage of methylated dinucleoside triphosphates and the molecular weight of dinucleoside triphosphatase indicate that this enzyme is different from the mRNA decapping enzyme previously characterized (A. Stevens, Mol. Cell. Biol. 8:2005-2010, 1988).  相似文献   

3.
Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3'-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity in the following decreasing order: Gp4G, 100; Gp3G, 82; Ap6A, 61; Gp2G, 52; Ap4A, 51; Ap2A, 41; Gp5G, 36; Ap5A, 27; Ap3A, 20, where 100 represents a 10-fold activation in relation to a control without effector. The velocity of the enzyme towards its substrate ATP displayed sigmoidal kinetics with a Hill coefficient (nH) of 1.6 and a Km(S0.5) value of 0.308 +/- 0.120 mm. Dinucleoside polyphosphates did not affect the maximum velocity (Vmax) of the reaction, but did alter its nH and Km(S0.5) values. In the presence of 0.01 mm Gp4G or Ap4A the nH and Km(S0.5) values were (1.0 and 0.063 +/- 0.012 mm) and (0.8 and 0.170 +/- 0.025 mm), respectively. With these kinetic properties, a dinucleoside polyphosphate concentration as low as 1 micro m may have a noticeable activating effect on the synthesis of poly(A) by the enzyme. These findings together with previous publications from this laboratory point to a potential relationship between dinucleoside polyphosphates and enzymes catalyzing the synthesis and/or modification of DNA or RNA.  相似文献   

4.
The plant and vertebrate snRP proteins U1A and U2B' are structurally closely related, but bind to different U snRNAs. Two additional related snRNP proteins, the yeast U2B' protein and Drosophila SNF/D25 protein, are analyzed here. We show that the previously described yeast open reading frame YIB9w encodes yeast U2B' as judged by the fact that the protein encoded by YIB9w bindsto stem-loop IV of yeast U2 snRNA in vitro and is part of the U2 snRNP in vivo. In contrast to the human U2B' protein, specific binding of yeast U2B' to RNA in vitro can occur in the absence of an accessory U2A' protein. The Drosophila SNF-D25 protein, unlike all other U1A/U2B' proteins studied to date, is shown to be a component of both U1 and U2 snRNPs. In vitro, SNF/D25 binds to U1 snRNA on itsown and to U2 snRNA in the presence of either the human U2A' protein or of Drosophila nuclear extract. Thus, its RNA-binding properties are the sum of those exhibited by human or potato U1A and U2B' proteins. Implications for the role of SNF/D25 in alternative splicing, and for the evolution of the U1A/U2B' protein family, are discussed.  相似文献   

5.
Small nuclear ribonucleoproteins (snRNPs) containing U1 and U5 snRNAs from HeLa cells have been fractionated using a combination of isopycnic centrifugation in cesium chloride and ion-exchange chromatography on DEAE-Sepharose. The procedure is based on the extreme stability conferred upon snRNPs by Mg2+ enabling them to withstand the very high ionic strength that prevails in cesium chloride. U1 snRNP prepared by this method contains all nine major proteins (68K, A, B, B', C, D, E, F, G) corresponding to those previously identified by immunoprecipitation and is therefore precipitable by anti-RNP and anti-Sm antibodies. U5 snRNP purified in this way contains the common D to G proteins and is also enriched in a 25 X 10(3) Mr protein that may be U5 snRNP-specific. The core-resistant U5 snRNA sequence (nucleotide 84 to 3' OH) covered by D to G proteins is extended by only six nucleotides. A similar situation is seen in U4-U6 snRNP, which we have obtained in a sufficiently pure form to examine protected sequences. However, the core-resistant sequence of U4 (nucleotide 116 to 3' OH) in U4-U6 snRNP is extended by 37 nucleotides, suggesting that the protein composition of this particle could be more complex than that of U5 snRNP. The ribonucleoprotein organization of snRNPs is summarized and discussed in view of our current knowledge on snRNA sequences protected by proteins.  相似文献   

6.
In order to elucidate the conformational properties of base-deleted oligodeoxyribonucleotides, the molecules d-CpS(pCpG)n (n = 1,2; S = sugar) were synthesized by the phosphotriester method and characterized by 1H-NMR spectroscopy. Complete assignment of all non-exchangeable proton resonances of both compounds was obtained by 1D- and 2D-NMR techniques. In combination with computer simulation, these spectra yielded proton-proton and proton-phosphorus coupling constants of high accuracy. These data provide valuable information about the sugar and the backbone conformation. It appears that d-Cp1Sp2Cp3G4 does not form a duplex under any of the conditions studied. On the contrary, the base-deleted hexamer d-Cp1Sp2Cp3Gp4Cp5G6 occurs as a right-handed' staggered' DNA duplex at 280 K: the core of this duplex is formed by the residues C(3)-G(6); two 'dangling' residues C(1) and S(2) are located at the two 5'-ends of the duplex. The assignment of the corresponding imino proton resonances for [d-CpS(pCpG)2]2 was based on their thermal behavior: the line broadening of these resonances was studied as a function of temperature. The chemical shift and the number of imino proton resonances accord well with the number and type of Watson-Crick base pairs which can be formed in the staggered duplex described above. Thermodynamic parameters of duplex formation were obtained from an analysis of the chemical shift versus temperature profiles of aromatic base and H-1' protons. It is suggested that the cytosine ring of C(1) stacks, at least part of the time, with the guanine ring on the nucleotide residue, G(6), situated in the complementary strand. The binding of Lys-Trp-Lys to [d-CpS(pCpG)2]2 as well as to [d-CpGpCpG]1 was investigated. It is concluded that the indole ring of the tryptophan residue probably stacks on top of the 3'-terminal guanine base of both duplexes, but not on the nucleic acid bases next to the apurinic (AP) site.  相似文献   

7.
V A Raker  G Plessel    R Lührmann 《The EMBO journal》1996,15(9):2256-2269
Stable association of the eight common Sm proteins with U1, U2, U4 or U5 snRNA to produce a spliceosomal snRNP core structure is required for snRNP biogenesis, including cap hypermethylation and nuclear transport. Here, the assembly of snRNP core particles was investigated in vitro using both native HeLa and in vitro generated Sm proteins. Several RNA-free, heteromeric protein complexes were identified, including E.F.G, B/B'.D3 and D1.D2.E.F.G. While the E.F.G complex alone did not stably bind to U1 snRNA, these proteins together with D1 and D2 were necessary and sufficient to form a stable U1 snRNP subcore particle. The subcore could be chased into a core particle by the subsequent addition of the B/B'.D3 protein complex even in the presence of free competitor U1 snRNA. Trimethylation of U1 snRNA's 5' cap, while not observed for the subcore, occurred in the stepwise-assembled U1 snRNP core particle, providing evidence for the involvement of the B/B' and D3 proteins in the hypermethylation reaction. Taken together, these results suggest that the various protein heterooligomers, as well as the snRNP subcore particle, are functional intermediates in the snRNP core assembly pathway.  相似文献   

8.
Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings.  相似文献   

9.
10.
The 70S RNA of Rous sarcoma virus contains 4S RNAs which serve as primers for the initiation of DNA synthesis in vitro by the RNA-directed DNA polymerase of the virus. We purified these primers in three different ways-by isolation of the covalent complex between primer and nascent DNA, by differential melting of the 70S RNA, and by two-dimensional electrophoresis in polyacrylamide gels. The 4S RNAs purified by these procedures were homogeneous and possessed very similar if not identical nucleotide compositions and sequences. The RNAs were approximately 75 nucleotides long, had pG at the 5' terminus and CpCpA(OH) at the 3' terminus, and contained a number of minor nucleotides characteristic of tRNA. In contrast to most tRNA's, the primer lacked rTp and contained Gp (Psip, Psip, Cp) Gp (possibly in place of the characteristic sequence GprTpPsipCpGp). At least 50% of the 4S primers available on 70S RNA were utilized in a standard polymerase reaction in vitro.  相似文献   

11.
Domain 5 (D5) is a highly conserved, largely helical substructure of group II introns that is essential for self-splicing. Only three of the 14 base pairs present in most D5 structures (A2.U33, G3.U32, and C4.G31) are nearly invariant. We have studied effects of point mutations of those six nucleotides on self-splicing and in vivo splicing of aI5 gamma, an intron of the COXI gene of Saccharomyces cerevisiae mitochondria. Though none of the point mutations blocked self-splicing under one commonly used in vitro reaction condition, the most debilitating mutations were at G3 and G4. Following mitochondrial Biolistic transformation, it was found that mutations at A2, G3, and C4 blocked respiratory growth and splicing while mutations at the other sites had little effect on either phenotype. Intra-D5 second-site suppressors showed that pairing between nucleotides at positions 2 and 33 and 4 and 31 is especially important for D5 function. At the G3.U32 wobble pair, the mutant A.U pair blocks splicing, but a revertant of that mutant that can form an A+.C base pair regains some splicing. A dominant nuclear suppressor restores some splicing to the G3A mutant but not the G3U mutant, suggesting that a purine is required at position 3. These findings are discussed in terms of the hypothesis of Madhani and Guthrie (H. D. Madhani and C. Guthrie, Cell 71:803-817, 1992) that helix 1 formed between yeast U2 and U6 small nuclear RNAs may be the spliceosomal cognate of D5.  相似文献   

12.
Several dinucleoside polyphosphates accept cytidine-3', 5'-bisphosphate from the adenylylated donor 5'-adenylylated cytidine 5',3'-bisphosphate in the T4 RNA ligase catalyzed reaction. The 5'-adenylylated cytidine 5',3'-bisphosphate synthesized in a first step, from ATP and cytidine-3',5'-bisphosphate, is used as a substrate to transfer the cytidine-3',5'-bisphosphate residue to the 3'-OH group(s) of diguanosine tetraphosphate (Gp4G) giving rise to Gp4GpCp and pCpGp4GpCp in a ratio of approximately 10 : 1, respectively. The synthesized Gp4GpCp was characterized by treatment with snake venom phosphodiesterase and alkaline phosphatase and analysis (chromatographic position and UV spectra) of the reaction products by HPLC. The apparent Km values measured for Gp4G and 5'-adenylylated cytidine 5',3'-bisphosphate in this reaction were approximately 4 mM and 0.4 mM, respectively. In the presence of 0.5 mM ATP and 0.5 mM cytidine-3',5'-bisphosphate, the relative efficiencies of the following nucleoside(5')oligophospho(5')nucleosides as acceptors of cytidine-3',5'-bisphosphate from 5'-adenylylated cytidine 5', 3'-bisphosphate are indicated in parentheses: Gp4G (100); Gp5G (101); Ap4G (47); Ap4A (39). Gp2G, Gp3G and Xp4X were not substrates of the reaction. Dinucleotides containing two guanines and at least four inner phosphates were the preferred acceptors of cytidine-3', 5'-bisphosphate at their 3'-OH group(s).  相似文献   

13.
UTP:glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) from Saccharomyces cerevisiae can transfer the uridylyl moiety from UDP-glucose onto tripolyphosphate (P(3)), tetrapolyphosphate (P(4)), nucleoside triphosphates (p(3)Ns) and nucleoside 5'-polyphosphates (p(4)Ns) forming uridine 5'-tetraphosphate (p(4)U), uridine 5'-pentaphosphate (p(5)U) and dinucleotides, such as Ap(4)U, Cp(4)U, Gp(4)U, Up(4)U, Ap(5)U and Gp(5)U. Unlike UDP-glucose, UDP-galactose was not a UMP donor and ADP was not a UMP acceptor. This is the first example of an enzyme that may be responsible for accumulation of dinucleoside tetraphosphates containing two pyrimidine nucleosides in vivo. Occurrence of such dinucleotides in S. cerevisiae and Escherichia coli has been previously reported (Coste et al., J. Biol. Chem. 262 (1987) 12096-12103).  相似文献   

14.
A combination of several enzymes, RNase-T1, nuclease S1, T4-polynucleotide kinase and T4-RNA ligase were used to prepare and modify different fragments of yeast tRNAAsp (normal anticodon G U C). This allowed us to reconstitute, in vitro, a chimeric tRNA that has any of the four bases G, A, U or C, as the first anticodon nucleotide, labelled with (32p) in its 3' position. Such reconstituted (32p) labelled yeast tRNAAsp were microinjected into the cytoplasm or the nucleus of the frog oocyte and checked for their stability as well as for their potential to work as a substrate for the maturation (modifying) enzymes under in vivo conditions. Our results indicate that the chimeric yeast tRNAsAsp were quite stable inside the frog oocyte. Also, the G34 was effectively transformed inside the cytoplasm of frog oocyte into Q34 and mannosyl-Q34; U34 into mcm5s2U and mcm5U. In contrast, C34 and A34 were not transformed at all neither in the cytoplasm nor in the nucleus of the frog oocyte. The above procedure constitutes a new approach in order to detect the presence of a given modifying enzyme inside the frog oocyte; also it provides informations about its cellular location and possibility about its specificity of interaction with foreign tRNA.  相似文献   

15.
In the pre-mRNA processing machinery of eukaryotic cells, U6 snRNA is located at or near the active site for pre-mRNA splicing catalysis, and U6 is involved in catalyzing the first chemical step of splicing. We have further defined the roles of key features of yeast U6 snRNA in the splicing process. By assaying spliceosome assembly and splicing in yeast extracts, we found that mutations of yeast U6 nt 56 and 57 are similar to previously reported deletions of U2 nt 27 or 28, all within yeast U2-U6 helix Ia. These mutations lead to the accumulation of yeast A1 spliceosomes, which form just prior to the Prp2 ATPase step and the first chemical step of splicing. These results strongly suggest that, at a late stage of spliceosome assembly, the presence of U2-U6 helix Ia is important for promoting the first chemical step of splicing, presumably by bringing together the 5' splice site region of pre-mRNA, which is base paired to U6 snRNA, and the branchsite region of the intron, which is base paired to U2 snRNA, for activation of the first chemical step of splicing, as previously proposed by Madhani and Guthrie [Cell, 1992, 71: 803-817]. In the 3' intramolecular stem-loop of U6, mutation G81C causes an allele-specific accumulation of U6 snRNP. Base pairing of the U6 3' stem-loop in yeast spliceosomes does not extend as far as to include the U6 sequence of U2-U6 helix Ib, in contrast to the human U6 3' stem-loop structure.  相似文献   

16.
The gene encoding diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts.  相似文献   

17.
U6 RNA is essential for nuclear pre-mRNA splicing and has been implicated directly in catalysis of intron removal. The U80G mutation at the essential magnesium binding site of the U6 3' intramolecular stem-loop region (ISL) is lethal in yeast. To further understand the structure and function of the U6 ISL, we have investigated the structural basis for the lethal U80G mutation by NMR and optical spectroscopy. The NMR structure reveals that the U80G mutation causes a structural rearrangement within the ISL resulting in the formation of a new Watson-Crick base pair (C67 x G80), and disrupts a protonated C67 x A79 wobble pair that forms in the wild-type structure. Despite the structural change, the accessibility of the metal binding site is unperturbed, and cadmium titration produces similar phosphorus chemical shift changes for both the U80G mutant and wild-type RNAs. The thermodynamic stability of the U80G mutant is significantly increased (Delta Delta G(fold) = -3.6 +/- 1.9 kcal/mol), consistent with formation of the Watson-Crick pair. Our structural and thermodynamic data, in combination with previous genetic data, suggest that the lethal basis for the U80G mutation is stem-loop hyperstabilization. This hyperstabilization may prevent the U6 ISL melting and rearrangement necessary for association with U4.  相似文献   

18.
An enzymatic procedure for the replacement of the ICG anticodon of yeast tRNAArgII by NCG trinucleotide (N = A, C, G or U) is described. Partial digestion with S1-nuclease and T1-RNAase provides fragments which, when annealed together, form an "anticodon-deprived" yeast tRNAArgII. A novel anticodon, phosphorylated with (32P) label on its 5' terminal residue, is then inserted using T4-RNA ligase. Such "anticodon-substituted" yeast tRNAArgII are microinjected into the cytoplasm of Xenopus laevis oocytes and shown to be able to interact with the anticodon maturation enzymes under in vivo conditions. Our results indicate that when adenosine occurs in the wobble position (A34) in yeast tRNAArgII it is efficiently modified into inosine (I34) while uridine (U34) is transformed into two uridine derivatives, one of which is probably mcm5U. In contrast, when a cytosine (C34) or guanosine (G34) occurs, they are not modified. These results are at variance with those obtained previously under similar conditions with anticodon derivatives of yeast tRNAAsp harbouring A, C, G or U as the first anticodon nucleotide. In this case, guanosine and uridine were modified while adenosine and cytosine were not.  相似文献   

19.
C I Reich  R W VanHoy  G L Porter  J A Wise 《Cell》1992,69(7):1159-1169
U1 snRNA is an essential splicing factor known to base pair with 5' splice sites of premessenger RNAs. We demonstrate that pairing between the universally conserved CU just downstream from the 5' junction interaction region and the 3' splice site AG contributes to efficient splicing of Schizosaccharomyces pombe introns that typify the AG-dependent class described in mammals. Strains carrying mutations in the 3' AG of an artificial intron accumulate linear precursor, indicative of a first step block. Lariat formation is partially restored in these mutants by compensatory changes in nucleotides C7 and U8 of U1 snRNA. Consistent with a general role in fission yeast splicing, mutations at C7 are lethal, while U8 mutants are growth impaired and accumulate linear, unspliced precursor to U6 snRNA. U1 RNA-mediated recognition of the 3' splice site may have origins in analogous intramolecular interactions in an ancestral self-splicing RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号