首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
DNA adducts of the environmental carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) interact stereospecifically with prokaryotic and eukaryotic polymerases in vitro. Toward understanding the capacity to replicate past different diastereomers of BPDE at specific sites in DNA, six deoxyoligonucleotides, each 33 bases long, were constructed with stereochemically defined BPDE adducts on adenine N6 at position two of the human N-ras codon 61. Four polymerases that were studied under single encounters with the template-primer complex terminated synthesis one base 3' to the lesion with all the adducted templates. When multiple encounters between polymerase and substrate were permitted, each of the polymerases analyzed revealed a unique pattern for a given adducted template. The general replication pattern was encompassed under two categories, reflecting the significance of the R and S configurations of C10 of the pyrenyl ring attached to the single-stranded DNA template. Furthermore, within each of these categories, every polymerase demonstrated distinct quantitative differences in product accumulation at a given site, for the various adducted templates. Among the polymerases utilized in this study, exonuclease-deficient Klenow fragment of polymerase I (exo- KF) exhibited the most efficient translesion synthesis resulting in approximately 16% full-length products with the modified templates bearing adducts with C10-S configuration. In contrast, chain elongation with bacteriophage T4 DNA polymerase bearing an active 3'-->5' exonucleolytic activity was most strongly inhibited by all six BPDE-adducted templates. Misincorporation of A opposite the adduct occurred in all the templates when polymerized with Sequenase, whereas exo- KF preferentially incorporated C opposite the C10-R BPDE adducts and A opposite the C10-S BPDE adducts.  相似文献   

2.
We have shown previously that wild-type p53 renders H460 human lung cancer cells more sensitive to apoptosis induction by environmental carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), but the mechanism of cell death is not fully understood. The present study provides insights into the mechanism by which BPDE causes apoptosis in H460 cells. Exposure of H460 cells to BPDE resulted in a concentration-dependent apoptotic cell death characterized by cleavage of poly(ADP-ribose)polymerase, DNA condensation, and apoptotic histone-associated DNA fragments released into the cytosol. The BPDE-mediated release of apoptotic histone-associated DNA fragments into the cytosol was also observed in a normal bronchial epithelial cell line BEAS-2B. The BPDE-induced apoptosis in H460 cells correlated with up-regulation of pro-apoptotic protein Bak, down-regulation of anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-xL, release of cytochrome c from mitochondria to the cytosol without a change in mitochondrial membrane potential or mitochondrial morphology (electron microscopy), and cleavage of caspase-8, -9, and -3. Ectopic expression of Bcl-2 failed to confer significant protection against BPDE-induced apoptosis in H460 cells. The SV40 immortalized mouse embryonic fibroblasts (MEFs) derived from Bak and Bax double knockout mice, but not Bid knockout mice, were significantly more resistant to BPDE-induced apoptosis compared with the MEFs derived from wild-type mice. The BPDE-induced apoptosis was partially but statistically significantly attenuated in the presence of specific inhibitors of caspase-9 (z-LEHDfmk) and caspase-8 (z-IETDfmk). In conclusion, the present study reveals that BPDE-induced apoptosis in H460 cells is associated with Bak induction and caspase activation but independent of Bcl-2.  相似文献   

3.
4.
Plasmid-mediated transformation and mutagenesis induced by (±)-trans- benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide (BP-DEI) in recipient Escherichia coli (E. coli) have been studied. Because plasmid DNA is used, the system is entirely free from direct toxic effects of BP-DEI on the recipient cells. Plasmid pK0482 DNA, which has two dominant genes, β-lactamase (amp-r) and galactokinase (galK) was modified with BP-DEI prior to its transformation of E. coli N99, AB1157, AB2463(recA?) and AB1886(uvrA?). Transformants were selected by ampicillin resistance and mutations were analyzed simultaneously by the altered expression of the galK gene. (1) Approx. 3 molecules of BP-DEI per molecule of pK0482 DNA decreased the transformation efficiency to 37% in AB1157 and the mutation frequency in this strain was proportional to the amount of BP-DEI covalently bound to pK0482 DNA. (2) In AB1886(uvrA?) a 37% transformation efficiency was produced by only 1 molecule of BP-DEI per molecule of pK0482 DNA, and the mutation frequency in this strain was higher than in AB1157. (3) In AB2463(recA?), the transformation efficiency was similar to that obtained with AB1157, but mutagenesis was clearly suppressed. (4) Polyacrylamide gel patterns of restriction digests of the pK0482 mutated at the galK gene were indistinguishable from those of the unmutated plasmid DNA.  相似文献   

5.
Benzo[a]pyrene is metabolised by isolated viable hepatocytes from both untreated and 3-methylcholanthrene pretreated rats to reactive metabolites which covalently bind to DNA. The DNA from the hepatocytes was isolated, purified and enzymically hydrolysed to deoxyribonucleosides. The hydrocarbon-deoxyribonucleoside products after initial separation, on small columns of Sephadex LH-20, from unhydrolysed DNA, oligonucleotides and free bases, were resolved by high pressure liquid chromatography (HPLC). The qualitative nature of the adducts found in both control and pretreated cells was virtually identical; however pretreatment with 3-methylcholanthrene resulted in a quantitatively higher level of binding. The major hydrocarbon-deoxyribonucleoside adduct, found in hepatocytes co-chromatographed with that obtained following reaction of the diol-epoxide, (±)7α,8β-dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene with DNA. Small amounts of other adducts were also present including a more polar product which co-chromatographed with the major hydrocarbon-deoxyribonucleoside adduct formed following microsomal activation of 9-hydroxybenzo[a]pyrene and subsequent binding to DNA. In contrast to the results with hepatocytes, when microsomes were used to metabolically activate benzo[a]pyrene, the major DNA bound-product co-chromatographed with the more polar adduct formed upon further metabolism of 9-hydroxybenzo[a]pyrene. These results illustrate that great caution must be exercised in the extrapolation of results obtained from short-term mutagenesis test systems, utilising microsomes, to in vivo carcinogenicity studies.  相似文献   

6.
The ultimate diol epoxide carcinogens derived from polycyclic aromatic hydrocarbons, such as benzo[a]pyrene (BP), are metabolized primarily by glutathione (GSH) conjugation reaction catalyzed by GSH transferases (GSTs). In human liver and probably lung, the alpha class GSTs are likely to be responsible for the majority of this reaction because of their high abundance. The catalytic efficiency for GSH conjugation of the carcinogenic (+)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide [(+)-anti-BPDE] is more than 5-fold higher for hGSTA1-1 than for hGSTA2-2. Here, we demonstrate that mutation of isoleucine-11 of hGSTA2-2, a residue located in the hydrophobic substrate-binding site (H-site) of the enzyme, to alanine (which is present in the same position in hGSTA1-1) results in about a 7-fold increase in catalytic efficiency for (+)-anti-BPDE-GSH conjugation. Thus, a single amino acid substitution is sufficient to convert hGSTA2-2 to a protein that matches hGSTA1-1 in its catalytic efficiency. The increased catalytic efficiency of hGSTA2/I11A is accompanied by greater enantioselectivity for the carcinogenic (+)-anti-BPDE over (-)-anti-BPDE. Further remodeling of the H-site of hGSTA2-2 to resemble that of hGSTA1-1 (S9F, I11A, F110V, and S215A mutations, SIFS mutant) results in an enzyme whose catalytic efficiency is approximately 13.5-fold higher than that of the wild-type hGSTA2-2, and about 2.5-fold higher than that of the wild-type hGSTA1-1. The increased activity upon mutations can be rationalized by the interactions of the amino acid side chains with the substrate and the orientation of the substrate in the active site, as visualized by molecular modeling. Interestingly, the catalytic efficiency of hGSTA2-2 toward (-)-anti-BPDE was increased to a level close to that of hGSTA1-1 upon F110V, not I11A, mutation. Similar to (+)-anti-BPDE, however, the SIFS mutant was the most efficient enzyme for GSH conjugation of (-)-anti-BPDE.  相似文献   

7.
We have determined the mutational specificity of S9-activated benzo[a]pyrene (B[a]P) at the endogenous aprt locus in a hemizygous Chinese hamster ovary cell line. The aprt gene of recovered mutants was amplified using the polymerase chain reaction (PCR) and directly sequenced. This spectrum was then compared to mutations recovered following treatment with the B[a]P metabolite, benzo[a]pyrene diol-epoxide (BPDE). No significant difference between the two spectra in the types of mutations produced, or their distribution was observed. This observation supports the hypothesis that BPDE is the reactive metabolite of B[a]P, responsible for the significant biological effects caused by this ubiquitous polycyclic aromatic hydrocarbon. The major mutation recovered was the G:C-->T:A transversion, and mutations were primarily localized within runs of guanines. We also confirmed our previous finding that mutation by B[a]P is non-random, targeting events in runs of guanines flanked by adenine residues. This same target hotspot region is found in codon 61 of the human c-Ha-ras1 proto-oncogene. This may help explain the selective activation of this codon by BPDE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号