首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intracellular nitrilase was purified from a Fusarium solani O1 culture, in which the enzyme (up to 3000 U L−1) was induced by 2-cyanopyridine. SDS-PAGE revealed one major band corresponding to a molecular weight of approximately 40 kDa. Peptide mass fingerprinting suggested a high similarity of the protein with the putative nitrilase from Gibberella moniliformis. Electron microscopy revealed that the enzyme molecules associated into extended rods. The enzyme showed high specific activities towards benzonitrile (156 U mg−1) and 4-cyanopyridine (203 U mg−1). Other aromatic nitriles (3-chlorobenzonitrile, 3-hydroxybenzonitrile) also served as good substrates for the enzyme. The rates of hydrolysis of aliphatic nitriles (methacrylonitrile, propionitrile, butyronitrile, valeronitrile) were 14–26% of that of benzonitrile. The nitrilase was active within pH 5–10 and at up to 50 °C with optima at pH 8.0 and 40–45 °C. Its activity was strongly inhibited by Hg2+ and Ag+ ions. More than half of the enzyme activity was preserved at up to 50% of n-hexane or n-heptane or at up to 15% of xylene or ethanol. Operational stability of the enzyme was examined by the conversion of 45 mM 4-cyanopyridine in a continuous and stirred ultrafiltration-membrane reactor. The nitrilase half-life was 277 and 10.5 h at 35 and 45 °C, respectively.  相似文献   

2.
A highly enantioselective (R)-ester hydrolase was partially purified from a newly isolated bacterium, Acinetobacter sp. CGMCC 0789, whose resting cells exhibited a highly enantioselective activity toward the acetate of (4R)-hydroxy-3-methyl-2-(2-propynyl)- cyclopent-2-enone (R-HMPC). The optimum pH and temperature of the partially purified enzyme were 8.0 and 60 °C, respectively. The enantioselectivity of the crude enzyme was increased by 1.2-fold from 16 to 20 when the reaction temperature was raised from 30 to 60 °C. The activity of the crude enzyme was enhanced by 4.1-fold and the enantioselectivity (E-value) was markedly enhanced by 4.3-fold from 16 to 68 upon addition of a cationic detergent, benzethonium chloride [(diisobutyl phenoxyethoxyethyl) dimethyl benzylammoniom chloride]. The hydrolysis of 52 mM (R,S)-HMPC acetate to (R)-HMPC was completed within 8 h, with optical purity of 91.4% eep and conversion of 49%.  相似文献   

3.
Redox enzyme mediated biocatalysis has the potential to regio- and stereo-specifically oxidize hydrocarbons producing valuable products with minimal by-product formation. In vitro reactions of the camphor (cytochrome P-450) 5-monooxygenase enzyme system with naphthalene-like substrates yield stereospecifically hydroxylated products from nonactivated hydrocarbons. Specifically, the enzyme system catalyzes the essentially stereospecific conversion of the cycloarene, tetralin (1,2,3,4-tetrahydronaphthalene) to (R)-1-tetralol ((R)-(−)-1,2,3,4-tetrahydro-1-naphthol). It is shown that this reaction obeys Michaelis–Menten kinetics and that interactions between the enzyme subunits are not affected by the identity of the substrate. This subunit independence extends to the efficiency of NADH usage by the enzyme system—subunit ratios do not effect efficiency, but substrate identity does. Tetralin is converted at an efficiency of 13±3%, whereas (R)-1-tetralol is converted at 7.8±0.7%. A model of this system based on Michaelis–Menten parameters for one subunit (Pdx: KM=10.2±2 μM) and both substrates (tetralin: KM=66±26 μM, νmax=0.11±0.04 s−1, and (R)-1-tetralol: KM=2800±1300 μM, νmax=0.83±0.22 s−1) is presented and used to predict the consumption and production of all substrates, products and cofactors.  相似文献   

4.
We report on the isolation and biochemical characterization of a novel, cold-active and metagenome-derived lipase with a high stereo-selectivity for pharmaceutically important substrates. The respective gene was isolated from a cosmid library derived from oil contaminated soil and designated lipCE. The deduced aa sequence indicates that the protein belongs to the lipase family l.3, with high similarity to Pseudomonas fluorescens lipases containing a C-terminal secretion signal for ABC dependent transport together with possible motifs for Ca2+-binding sites. The overexpressed protein revealed a molecular weight of 53.2 kDa and was purified by refolding from inclusion bodies after expression in Escherichia coli. The optimum temperature of LipCE was determined to be 30 °C. However, the enzyme still displayed 28% residual activity at 0 °C and 16% at −5 °C. Calcium ions strongly increased activity and thermal stability of the protein. Further detailed biochemical characterization of the recombinant enzyme showed an optimum pH of 7 and that it retained activity in the presence of a range of metal ions and solvents. A detailed analysis of the enzyme's substrate spectrum with more than 34 different substrates indicated that the enzyme was able to hydrolyze a wide variety of substrates including the conversion of long chain fatty acid substrates with maximum activity for pNP-caprate (C10). Furthermore LipCE was able to hydrolyze stereo-selectively ibuprofen-pNP ester with a high preference for the (R) enantiomer of >91% ee and it demonstrated selectivity for esters of primary alcohols, whereas esters of secondary or tertiary alcohols were nearly not converted.  相似文献   

5.
Badal C. Saha   《Process Biochemistry》2004,39(12):1871-1876
A newly isolated strain of the fungus, Mucor circinelloides (NRRL 26519), when grown on lactose, cellobiose, or Sigmacell 50 produces complete cellulase (endoglucanase, cellobiohydrolase, and β-glucosidase) system. The extracellular endoglucanase (EG) was purified to homogeneity from the culture supernatant by ethanol precipitation (75%, v/v), CM Bio-Gel A column chromatography, and Bio-Gel A-0.5 m gel filtration. The purified EG (specific activity 43.33 U/mg protein) was a monomeric protein with a molecular weight of 27 000. The optimum temperature and pH for the action of the enzyme were at 55 °C and 4.0–6.0, respectively. The purified enzyme was fully stable at pH 4.0–7.0 and temperature up to 60 °C. It hydrolysed carboxymethyl cellulose and insoluble cellulose substrates (Avicel, Solka-floc, and Sigmacell 50) to soluble cellodextrins. No glucose, cellobiose, and short chain cellooligosaccarides were formed from these substrates. The purified EG could not degrade oat spelt xylan and larch wood xylan. It bound to Avicell, Solka-floc, and Sigmacell 50 at pH 5.0 and the bound enzyme was released by changing the pH to 8.0. The enzyme activity was enhanced by 27±5 and 44±14% by the addition of 5 mM MgCl2 and 0.5 mM CoCl2, respectively, to the reaction mixture. Comparative properties of this enzyme with other fungal EGs are presented.  相似文献   

6.
A highly enantioselective carbonyl reductase produced by a new yeast strain Candida viswanathii MTCC 5158, which was isolated using an acetophenone enriched medium, has been purified and characterized. The enzyme has been purified to near homogeneity using ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The molecular properties of the carbonyl reductase suggested the native enzyme to be tetrameric, with an apparent molecular weight of 120 kDa, the monomer being about 29 kDa. Acetyl aryl ketones were found to be the preferred substrates for the enzyme and the best reaction was the enantioselective reduction of acetophenone. The enzyme yielded (S)-alcohol in preference to (R)-alcohol and utilized NADH, but not NADPH as the cofactor. The purified enzyme exhibited maximum enzyme activity at pH 7.0 and 60 °C. The enzyme retained about 80% of its activity after 7 h incubation at 25 °C in sodium phosphate buffer (50 mM, pH 7.0). The addition of reducing agents like dithiothreitol and β-mercaptoethanol enhanced the enzyme activity while organic solvents, detergents and chaotropic agents had deleterious effect on enzyme activity. Metal chelating agents like hydroxyquinoline and o-phenanthroline have significant effect on enzyme activity suggesting that the carbonyl reductase required the presence of a tightly bound metal ion for activity or stability. The maximum reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) for acetophenone and NADH were 59.21 μmol/(min mg) protein and 0.153 mM and 82.64 μmol/(min mg) protein and 0.157 mM at a concentration range of 0.2–2 mM acetophenone (NADH fixed at 0.5 mM) and 0.1–0.5 mM NADH (acetophenone fixed at 2 mM), respectively.  相似文献   

7.
A Bacillus niacini strain (EM001) producing an ofloxacin ester-enantioselective esterase was isolated from the soil samples collected near Taejon, Korea. The cloned gene showed that the esterase EM001 composed of 495 amino acids corresponding to a relative molecular weight (Mr) of 54,098 kDa. Based on the Mr and the protein sequence, the esterase EM001 was similar to p-nitrobenzyl esterase from Bacillus subtilis with an identity of 41.8%. The optimum temperature and pH of the purified His-tagged enzyme were 45 °C and 9.0, respectively. The purified esterase EM001 hydrolyzed preferably (R)-ofloxacin propyl ester than (S)-form ester at the initial reaction phase with an eeP of 67% until the conversion rate become up to 35%.  相似文献   

8.
An extracellular protease from the marine bacterium Sphingomonas paucimobilis, strain 116, isolated from the stomach of Antarctic krill, Euphausia superba Dana, was purified and characterized. The excretion of protease was maximal at temperatures from 5 to 10°C, i.e. below the temperature optimum for the strain growth (15°C). The highly purified enzyme was a metalloprotease [sensivity to ethylenediaminetetraacetic acid (EDTA)] and showed maximal activity against proteins at 20–30°C and pH 6.5–7.0, and towards N-benzoyl-tyrosine ethyl ester (BzTyrOEt) at pH 8.0. At 0°C the enzyme retained as much as 47% of maximal activity in hydrolysis of urea denatured haemoglobin (Hb) (at pH 7.0), and at −5 and −10°C, 37 and 30%, respectively. The metalloprotease was stable up to 30°C for 15 min and up to 20°C for 60 min. These results indicate that the proteinase from S. paucimobilis 116 is a cold-adapted enzyme.  相似文献   

9.
The optimization of a continuous enzymatic reaction yielding (R)-(−)-phenylacetylcarbinol ((R)-PAC), a key intermediate of the (1R,2S)-(−)-ephedrine synthesis, is presented. We compare the suitability of different mutants of the pyruvate decarboxylase (PDC) from Zymomonas mobilis with respect to their application in biotransformation using pyruvate or acetaldehyde and benzaldehyde as substrates, respectively. Starting from 90 mM pyruvate and 30 mM benzaldehyde, (R)-PAC was obtained with a space time yield of 27.4 g/(L·day) using purified PDCW392I in an enzyme-membrane reactor. Due to the high stability of the mutant enzymes PDCW392I and PDCW392M towards acetaldehyde, a continuous procedure using acetaldehyde instead of pyruvate was developed. The kinetic results of the enzymatic synthesis starting from acetaldehyde and benzaldehyde demonstrate that the carboligation to (R)-PAC is most efficiently performed using a continuous reaction system and feeding both aldehydes in equimolar concentration. Starting from an inlet concentration of 50 mM of both aldehydes, (R)-PAC was obtained with a space-time yield of 81 g/(L·day) using the mutant enzyme PDCW392M. The new reaction strategy allows the enzymatic synthesis of (R)-PAC from cheap substrates free of unwanted by-products with potent mutants of PDC from Z. mobilis in an aqueous reaction system.  相似文献   

10.
All-E-(3R,6′R)-3-hydroxy-3′,4′-didehydro-β,γ-carotene (anhydrolutein I) and all-E-(3R,6′R)-3-hydroxy-2′,3′-didehydro-β,ε-carotene (2′,3′-anhydrolutein II) have been isolated and characterized from extracts of human plasma using semipreparative high-performance liquid chromatography (HPLC) on a C18 reversed-phase column. The identification of anhydroluteins was accomplished by comparison of the UV-Vis absorption and mass spectral data as well as HPLC-UV-Vis-mass spectrometry (MS) spiking experiments using fully characterized synthetic compounds. Partial synthesis of anhydroluteins from the reaction of lutein with 2% H2SO4 in acetone, in addition to anhydrolutein I (54%) and 2′,3′-anhydrolutein II (19%), also gave (3′R)-3′-hydroxy-3,4-dehydro-β-carotene (3′,4′-anhydrolutein III, 19%). While anhydrolutein I has been shown to be usually accompanied by minute quantities of 2′,3′-anhydrolutein II (ca. 7–10%) in human plasma, 3′,4′-anhydrolutein III has not been detected. The presence of anhydrolutein I and II in human plasma is postulated to be due to acid catalyzed dehydration of the dietary lutein as it passes through the stomach. These anhydroluteins have also been prepared by conversion of lutein diacetate to the corresponding anhydrolutein acetates followed by alkaline hydrolysis. However, under identical acidic conditions, loss of acetic acid from lutein diacetate proceeded at a much slower rate than dehydration of lutein. The structures of the synthetic anhydroluteins, including their absolute configuration at C(3) and C(6′) have been unambiguously established by 1H NMR and in part by 13C NMR, and circular dichroism.  相似文献   

11.
Covalent immobilization of pure lipases A and B from Candida rugosa on agarose and silica is described. The immobilization increases the half-life of the biocatalysts ( ) with respect to the native pure lipases ( ). The percentage immobilization of lipases A and B is similar in both supports (33–40%). The remaining activity of the biocatalysts immobilized on agarose (70–75%) is greater than that of the enzymatic derivatives immobilized on SiO2 (40–50%). The surface area and the hydrophobic/hydrophilic properties of the support control the lipase activity of these derivatives. The thermal stability of the immobilized lipase A derivatives is greater than that of lipase B derivatives. The nature of the support influences the thermal deactivation profile of the immobilized derivatives. The immobilization in agarose (hydrophilic support) gives biocatalysts that show a greater initial specific reaction rate than the biocatalysts immobilized in SiO2 (hydrophobic support) using the hydrolysis of the esters of (R) or (S) 2-chloropropanoic and of (R,S) 2-phenylpropanoic acids as the reaction test. The enzymatic derivatives are active for at least 196 h under hydrolysis conditions. The stereospecificity of the native and the immobilized enzymes is the same.  相似文献   

12.
Rhodococcus rhodochrous IFO 15564 enantioselectively hydrolysed racemic 3-benzoyloxypentanenitrile and 3-benzoyloxypentanamide to afford (R)-amide and (S)-car☐ylic acid with high enantiomeric excess (> 90%). In this reaction, both enantiomers of the starting nitrile were converted to the amide by nitrile hydratase, and amidase-catalysed enantioselective hydrolysis of the amide was responsible for the kinetic resolution. The lack of enantioselectivity of the nittile hydratase toward the racemic nitrile forms a marked contrast to the case of previously reported highly enantioselective conversion of prochiral 3-benzoyloxypentanedinitrile by this enzyme. since (R)-amide could be hydrolysed chemically to (R)-car☐ylic acid without any loss of its ee, the present microbial kinetic resolution serves as an effective method for preparing both enantiomers of synthetically useful 3-hydroxypentanoic acid derivatives.  相似文献   

13.
In this paper we describe the cloning and optimization of a nitrilase for a regio- and stereo-specific synthesis of (3S)-3-cyano-5-methyl hexanoic acid (2) from isobutylsuccinonitrile (IBSN, 1). Ten representative plant and bacterial nitrilases have been cloned and their substrate specificity was studied using a fluorescent assay. The desired nitrilase AtNit1 from Arabidopsis thaliana was identified with high enantioselectivity (E > 150). This enzyme was then purified and characterized to be an oligomer of 12 subunits by size exclusion chromatography. AtNit1 was subsequently optimized to increase expression and engineered to improve activity. Preliminary screening of a small percentage (1%) of the mutant library shows that the mutant C236S has a nearly 3-fold increase in reactivity in the hydrolysis of IBSN.  相似文献   

14.
Kinetic resolution of a chiral alcohol, 4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopentenone (HMPC), a key intermediate for the production of prallethrin insecticides, was successfully carried out by enantioselective hydrolysis of (RS)-HMPC acetate using calcium alginate gel-entrapped cells of a newly isolated esterase-producing bacterium Acinetobacter sp. CGMCC 0789. When the effect of different cosolvents was investigated, it was found that isopropanol could markedly enhance the activity and enantioselectivity of the immobilized cells. The optimum concentration of isopropanol was 10% (v/v) where immobilized cells still showed good operational stability. After 10 cycles of reaction, no significant decrease in the enzyme activity was observed. The catalytic specificity constants (Vmax/Km) for both enantiomers of the substrate were determined with partially purified enzyme, giving 0.0184 and 0.671 h−1 for the (S)- and (R)-ester, respectively.  相似文献   

15.
The use of (R)-specific enoyl-coenzyme A (CoA) hydratase (PhaJ) provides a powerful tool for polyhydroxyalkanoate (PHA) synthesis from fatty acids or plant oils in recombinant bacteria. PhaJ provides monomer units for PHA synthesis from the fatty acid ß-oxidation cycle. Previously, two phaJ genes (phaJ1Pa and phaJ2Pa) were identified in Pseudomonas aeruginosa. This report identifies two new phaJ genes (phaJ3Pa and phaJ4Pa) in P. aeruginosa through a genomic database search. The abilities of the four PhaJPa proteins and the (R)-3-hydroxyacyl-acyl carrier protein [(R)-3HA-ACP] dehydrases, FabAPa and FabZPa, to supply monomers from enoyl-CoA substrates for PHA synthesis were determined. The presence of either PhaJ1Pa or PhaJ4Pa in recombinant Escherichia coli led to the high levels of PHA accumulation (as high as 36–41 wt.% in dry cells) consisting of mainly short- (C4–C6) and medium-chain-length (C6–C10) 3HA units, respectively. Furthermore, detailed characterizations of PhaJ1Pa and PhaJ4Pa were performed using purified samples. Kinetic analysis revealed that only PhaJ4Pa exhibits almost constant maximum reaction rates (Vmax) irrespective of the chain length of the substrates. The assay for stereospecific hydration revealed that, unlike PhaJ1Pa, PhaJ4Pa has relatively low (R)-specificity. These hydratases may be very useful as monomer-suppliers for the synthesis of designed PHAs in recombinant bacteria.  相似文献   

16.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

17.
Optically active (S)-flurbiprofen was produced fed-batch-wisely in a lipase-catalyzed dispersed aqueous phase reaction system induced by succinyl β-cyclodextrin (suβ-CD). A highly concentrated 480 mM (S)-flurbiprofen, corresponding to 117.0 g/l, with an enantiomeric excess of 0.98 and conversion yield of 0.48 was obtained. (S)-Flurbiprofen produced in an inclusion complex form with suβ-CD was extractively purified using three-step procedures: decomplexation of (S)-flurbiprofen and residual (R)-flurbiprofen ethyl ester ((R)-FEE) using the ethyl acetate, dissolution of (S)-flurbiprofen from (R)-FEE using a sodium bicarbonate solution, and selective precipitation of (S)-flurbiprofen using 2-propanol. Consequently, an extremely high concentration of 420 mM (S)-flurbiprofen with an optical purity higher than 98% was recovered after purification.  相似文献   

18.
A Bacillus strain was screened for asymmetric resolution of (R)-Naproxen. The optical purity (ee (%)) of (R)-Naproxen was found to be 86.47% and conversion rate was 40–50% in bacterial cells PBS reaction system. The dissolved lipase was clarified from the Bacillus bacterial cells by centrifugation and loaded on a phenyl-Sepharose CL-4B column. After purification by a single hydrophobic chromatography, the activity of lipase was approximately 43 times higher than the crude one. The hydrolytic activity of lipase using Naproxen ethyl ester and p-nitrophenyl acetate (p-NPA) as substrate remained essentially constant during the purification procedure. A Bacillus strain with stereochemical selectivity was obtained.  相似文献   

19.
Huang XJ  Yu AG  Xu ZK 《Bioresource technology》2008,99(13):5459-5465
A simple way of fabricating enzymatic membrane reactor with high enzyme loading and activity retention from the conjugation between nanofibrous membrane and lipase was devised. Poly(acrylonitrile-co-2-hydroxyethyl methacrylate) (PANCHEMA) was electrospun into fibrous membrane and used as support for enzyme immobilization. The hydroxyl groups on the fibrous membrane surface were activated with epichlorohydrin, cyanuric chloride or p-benzoquinone, respectively. Lipase from Candida rugosa was covalently immobilized on these fibrous membranes. The resulted bioactive fibrous membranes were examined in catalytic efficiency and activity for hydrolysis. The observed enzyme loading on the fibrous membrane with fiber diameter of 80–150 nm was up to 1.6% (wt/wt), which was as thrice as that on the fibrous membrane with fiber diameter of 800–1000 nm. Activity retention for the immobilized lipase varied between 32.5% and 40.6% with the activation methods of hydroxyl groups. Stabilities of the immobilized lipase were obviously improved. In addition, continuous hydrolysis was carried out with an enzyme-immobilized fibrous membrane bioreactor and a steady hydrolysis conversion (3.6%) was obtained at a 0.23 mL/min flow rate under optimum condition.  相似文献   

20.
Yan QJ  Wang L  Jiang ZQ  Yang SQ  Zhu HF  Li LT 《Bioresource technology》2008,99(13):5402-5410
An extracellular β-xylosidase from the thermophilic fungus Paecilomyces thermophila J18 was purified 31.9-fold to homogeneity with a recovery yield of 2.27% from the cell-free culture supernatant. It appeared as a single protein band on SDS–PAGE with a molecular mass of approx 53.5 kDa. The molecular mass of β-xylosidase was 51.8 kDa determined by Superdex 75 gel filtration. The enzyme was a glycoprotein with a carbohydrate content of 61.5%. It exhibited an optimal activity at 55 °C and pH 6.5, respectively. The enzyme was stable in the range of pH 6.0–9.0 and at 55 °C. The purified enzyme hydrolyzed xylobiose and higher xylooligosaccharides but was inactive against xylan substrates. It released xylose from xylooligosaccharides with a degree of polymerization ranging between 2 and 5. The rate of xylose released from xylooligosaccharides by the purified enzyme increased with increasing chain length. It had a Km of 4.3 mM for p-nitrophenol-β-d-xylopyranoside and was competitively inhibited by xylose with a Ki value of 139 mM. Release of reducing sugars from xylans by a purified xylanase produced by the same organism increased markedly in the presence of β-xylosidase. During 24-hour hydrolysis, the amounts of reducing sugar released in the presence of added β-xylosidase were about 1.5–1.73 times that of the reaction employing the xylanase alone. This is the first report on the purification and characterization of a β-xylosidase from Paecilomyces thermophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号