首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Primary, high density bovine articular chondrocyte (BAC) cultures, stimulated with transforming growth factor-β-1, elaborated a high molecular weight anionic glycoconjugate, kDa 540, which does not contain glycosaminoglycan chains (Chan and Anastassiades, 1996). The effect of exogenously added transforming growth factor-β-1 on the elaboration of the high molecular weight glycoconjugate and of proteoglycans was studied during dedifferentiation of the chondrocytes, utilizing a serial subculture technique under anchorage-dependent conditions, up to four subcultures. The high molecular weight glycoconjugate was detected in the media of all growth-factor-stimulated chondrocyte subcultures, as well as stimulated primary cultures, but not in unstimulated primary cultures or subcultures. By contrast, a large proteoglycan, was only secreted by primary cultures and first subcultures, whether treated with transforming growth factor-β-1 or untreated. This proteoglycan contained mostly chondroitin sulfate chains, whose hydrodynamic size was increased by the addition of transforming growth factor-β-1. Further, the pattern of the proteoglycans appearing in the media of subcultures 2–4 was influenced by the addition of transforming growth factor-β-1, so that while these control subcultures elaborated both the large and small chondroitin sulfate proteoglycans, the equivalent stimulated subcultures elaborated only intermediate sized chondroitin sulfate proteoglycan(s). These results suggest that while dedifferentiation of articular chondrocytes, achieved by subculturing, strongly modulates the effect of exogenously added transforming growth factor-β-1 on the type of proteoglycan elaborated, the process of dedifferentiation does not influence the transforming-growth-factor-β-dependent synthesis of the high molecular weight anionic glycoconjugate.  相似文献   

3.
4.
5.
Articular cartilage is a specialized connective tissue containing chondrocytes embedded in a network of extracellular macromolecules such as type II collagen and presents poor capacity to self-repair. Autologous chondrocyte transplantation (ACT) is worldwide used for treatment of focal damage to articular cartilage. However, dedifferentiation of chondrocytes occurs during the long term culture necessary for mass cell production. The aim of this study was to investigate if addition of bone morphogenetic protein (BMP)-2, a strong inducer of chondrogenic expression, to human chondrocytes immediately after their isolation from cartilage, could help to maintain their chondrogenic phenotype in long-term culture conditions. Human articular chondrocytes were cultured according to the procedure used for ACT. Real-time PCR and Western blotting were performed to evaluate the cellular phenotype. Exogenous BMP-2 dramatically improves the chondrogenic character of knee articular chondrocytes amplified over two passages, as assessed by the BMP-2 stimulation on type II procollagen expression and synthesis. This study reveals that BMP-2 could potentially serve as a therapeutic agent for supporting the chondrogenic phenotype of human articular chondrocytes expanded in the conditions generally used for ACT.  相似文献   

6.
Primary cultures of rabbit articular chondrocytes have been cultivated normally and within three-dimensional systems using different alginate matrices. The in vitro proliferation capacity of the cells immobilized in the calcium alginate beads was investigated. The growth curve showed that chondrocytes are able to grow and to divide for several days inside the beads; in parallel an increase in protein contents was also measured. The differentiated phenotype of rabbit articular chondrocytes consists of cartilage-specific proteoglycans. During serial monolayer cultures this phenotype was lost and replaced by a low level of proteoglycan synthesis. On the contrary when cultivated in beads, entrapped cells maintained their differentiated pheno-type over time; the rates of proteoglycan were similar to those of primary chondrocytes. All these parameters were tested comparatively using different substrata in monolayer cultures and in alginate gels. Assays were carried out to assess the influence of type I collagen, type IV collagen, and of fibronectine on the growth as well as on the differentiation phenotype. The encapsulation methodology is readily applicable to the culture of chondrocytes in single beads, in multiwell dishes, or to mass culture for a bioproduction of extracellular matrix components.  相似文献   

7.
The effect of transforming growth factor-beta (TGF-beta, 1 ng/ml) on proteoglycan synthesis by rabbit articular chondrocytes in culture was studied in the presence of fetal bovine serum. Exposure of confluent cells for 24 h to the factor resulted in a marked increase of 35S-labeled sulfate incorporation in the newly synthesized proteoglycans (PG), as estimated by glycosaminoglycan (GAG) radioactivity (+58%). The onset was observed 6 h after addition of the factor but was significant after 12 h. TGF-beta also enhanced the uptake of [35S]sulfate by chondrocytes, but had no effect on the release of PG by these cells. The effect of TGF-beta on the distribution of PG between the medium and the cell layer was shown to be dependent on the serum concentration in the medium: the relative proportion of cell-layer associated GAG of TGF-beta-treated cells decreased with increasing concentration of fetal bovine serum. The proportion of aggregated PG, the hydrodynamic size of PG monomers and GAG chains were not modified by TGF-beta, but the relative distribution of disaccharides 6- and 4-sulfate in GAG chains was altered by the factor: the proportion of chondroitin 6-sulfate (C6S) was decreased while that of chondroitin 4-sulfate (C4S) was augmented in presence of TGF-beta, leading to a decrease of the ratio C6S/C4S (-11 to -22%, P less than 0.01). The present study indicates that TGF-beta promotes the synthesis of a modified extracellular matrix in cultured articular chondrocytes. This mechanism could be relevant to some aspects of cartilage repair in osteoarticular diseases.  相似文献   

8.
9.
Calf (2-3-month-old) and steer (approximately 18-month-old) bovine articular chondrocytes were isolated and cultured as high density monolayers. The proteoglycans synthesized on day 5 during a 15-h period of labeling with [35S]sulfate or [3H]glucosamine were isolated and characterized. The majority (greater than 70%) of the newly synthesized proteoglycans were found in the medium. When viewed in the electron microscope, medium-derived proteoglycans of high buoyant density were longer in calf than in steer. The medium and extracts of the cell layer were pooled and the radiolabeled proteoglycans were fractionated by isopycnic density gradient centrifugation performed under dissociative conditions. The low buoyant density fraction contained, in both calf and steer, small-sized nonaggregating proteoglycans containing chondroitin sulfate. The high buoyant density fraction contained greater than 90% of the newly synthesized proteoglycans. The majority were able to interact with hyaluronic acid to form aggregates. Calf high buoyant density fraction proteoglycans were larger, had longer chondroitin sulfate chains and lower ratios of keratan sulfate chains/chondroitin sulfate chains than steer high buoyant density fraction proteoglycans. These maturation-related differences are typical of those present in the proteoglycans of the calf and steer cartilage matrix from which the chondrocytes were isolated. Experiments with beta-D-xylosides showed that steer cultures had the capacity to synthesize twice as many chondroitin sulfate chains/cell as calf cultures. At each xyloside concentration used, chondroitin sulfate chains were longer in calf than steer. At both ages, chain size decreased with increase in rate of synthesis; the relationship between chain size and rate of synthesis was, however, quite different at the two ages. The results of these studies suggest that articular chondrocytes have an inherent program that determines the quality of proteoglycans synthesized at different ages.  相似文献   

10.
Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.  相似文献   

11.
We have previously shown that TGF-beta 1 decreased the entry of G0/G1-synchronized rabbit articular chondrocytes (RAC) into S-phase, whereas it enhanced the proliferation rate of actively dividing cells (asynchronous or S-phase-synchronized cells). The growth proliferative effect was accompanied by both increased DNA replication rate and G2/M delay. Since TGF-beta mRNA has been detected in chondrocytes, it was of interest to study the expression of the factor in correlation with the cell cycle of RAC. Using cytofluorometric analysis of both DNA content and TGF-beta protein level, we demonstrated that S-phase-synchronized RAC constitutively expressed TGF-beta, whereas G0/G1-synchronized cells only display very low levels of the factor. The data showed that the expression of TGF-beta is correlated with S-phase traverse since it increases with the percentage of cells in S-phase (less than 27% in G0/G1 to 70% in S-phase-synchronized cells). Moreover, exposure of RAC to TGF-beta 1 (1 ng/ml) for 24 h increased the percentage of positive cells, independently of the number of cells in S-phase, indicating that the factor may up-regulate its own expression. All together, these data suggest that TGF-beta could play a role in initiating the proliferation of articular chondrocytes during the early events of osteoarthritis and might take a part in the repair of cartilage matrix.  相似文献   

12.
Cartilage development is initiated by the differentiation of mesenchymal cells into chondrocytes. Differentiated chondrocytes in articular cartilage undergo dedifferentiation and apoptosis during arthritis, in which NO production plays a critical role. Here, we investigated the roles and mechanisms of action of insulin-like growth factor-1 (IGF-1) in the chondrogenesis of mesenchymal cells and the maintenance and survival of differentiated articular chondrocytes. IGF-1 induced chondrogenesis of limb bud mesenchymal cells during micromass culture through the activation of phosphatidylinositol 3-kinase (PI3K) and Akt. PI3K activation is required for the activation of protein kinase C (PKC)-alpha and p38 kinase and inhibition of ERK1/2. These events are necessary for chondrogenesis. The growth factor additionally blocked NO-induced dedifferentiation and apoptosis of primary culture articular chondrocytes. NO production in chondrocytes induced down-regulation of PI3K and Akt activities, which was blocked by IGF-1 treatment. Stimulation of PI3K by IGF-1 resulted in blockage of NO-induced activation of p38 kinase and ERK1/2 and inhibition of PKCalpha and PKCzeta, which in turn suppressed dedifferentiation and apoptosis. Our results collectively indicate that IGF-1 regulates differentiation, maintenance of the differentiated phenotype, and apoptosis of articular chondrocytes via a PI3K pathway that modulates ERK, p38 kinase, and PKC signaling.  相似文献   

13.
14.
Summary The single and combined actions of transforming growth factor (TGF)-beta and osteogenin were evaluated with regard to induction of colony formation and reexpression of the differentiated phenotype by dedifferentiated rabbit articular chondrocytes in soft agarose under serum-free conditions. TGF-beta alone did not promote colony formation and induced accumulation of proteoglycans and type II collagen at significantly lower levels than those induced by osteogenin. Although synergism between these two growth factors occurred with respect to the induction of colony formation, their joint action on reexpression of the differentiated phenotype was additive. Complex interactions between the two growth factors may explain the latter phenomenon.  相似文献   

15.
Recent advances in tissue engineering offer considerable promise for the repair of focal lesions in articular cartilage. Here we describe (1) the macromolecular organization of tissue-engineered neocartilage grafts at light and electron microscopic levels, (2) their in vitro development, and (3) the effect of chondrocyte dedifferentiation, induced by monolayer expansion, on their resultant structure. We show that grafts produced from primary cultures of chondrocytes are hyaline in appearance with identifiable zonal strata as evidenced by cell morphology, matrix organization, and immunohistochemical composition. Like native articular cartilage, their surface zone contains type I collagen, surface zone proteoglycan, biglycan and decorin with type II collagen, aggrecan, chondroitin sulfate, chondroitin-4-sulfate, and keratan sulfate, becoming more prominent with depth. Assessment of cell viability by Live/Dead staining and cell-cycle analysis with BrDU suggest that the in vitro tissue has a high cellular turnover and develops through both appositional and interstitial growth mechanisms. Meanwhile, cell-tracker studies with CMFDA (5-chloromethyl-fluorescein diacetate) demonstrate that cell sorting in vitro is not involved in their zonal organization. Finally, passage expansion of chondrocytes in monolayer culture causes progressive reductions in graft thickness, loss of zonal architecture, and a more fibrocartilaginous tissue histology, consistent with a dedifferentiating chondrocyte phenotype.  相似文献   

16.
17.
The dedifferentiation of chondrocytes in culture is classically associated with a transition from a rounded to a spread morphology. However, the loss of chondroitin sulfate proteoglycan (CSPG) and type II collagen gene expression (markers of the differentiated chondrocyte) does not occur for all polygonal or fibroblast-like cells at the same stage of culture. Furthermore, it has been demonstrated that retinoic acid-dedifferentiated chondrocytes can reexpress type II collagen if treated by the microfilament disruptive drug dihydrocytochalasin B, without a return to the spherical shape. In the present study, we have investigated by fluorescent double-staining whether the synthesis of both CSPG and type II collagen by dedifferentiating chick chondrocytes in low density cultures is dependent on a type of actin organization. We report that the synthesis of CSPG and type II collagen synthesis is coincident with the presence of a faint microfibrillar actin architecture but is absent in chondrocytes showing well defined actin cables. This correlation was observed independently of the shapes exhibited by the cells. Moreover, type I collagen (marker of the dedifferentiated chondrocyte) is synthesized mainly in cells showing large actin cables. This study, performed in the absence of drugs, suggests that actin organization, rather than changes in cell shape, is involved in modulating the chondrogenic phenotype in vitro.  相似文献   

18.
19.
The effect of transforming growth factor beta (TGF-beta) has been studied in a bovine articular cartilage organ culture. The peptide stimulates synthesis of proteoglycans in a dose-dependent manner, reaching saturation at 10 ng/ml. This dose gave an approximate 7-fold increase in synthesis over basal controls. In addition, the peptide decreased the rates of catabolism of proteoglycans with an approximately 2-fold maximal effect seen at 5 ng/ml. At the latter concentration, TGF-beta prevented the 4-fold loss of proteoglycans which occurred in cultures maintained under basal conditions over the course of 3 weeks. There was no increase in cell (DNA) content of the cartilage explants under these conditions of TGF-beta treatment, and the net collagen content of the explants remained constant.  相似文献   

20.
We examined the effect of fibroblast growth factor (FGF) on proteoglycan synthesis by rabbit costal chondrocyte cultures maintained on plastic tissue culture dishes. Low density rabbit costal chondrocyte cultures grown in the absence of FGF gave rise at confluency to a heterogeneous cell population composed of fibroblastic cells and poorly differentiated chondrocytes. When similar cultures were grown in the presence of FGF, the confluent cultures organized into a homogenous cartilage-like tissue composed of rounded cells surrounded by a refractile matrix. The cell ultrastructure and that of the pericellular matrix were similar to those seen in vivo. The expression of the cartilage phenotype in confluent chondrocyte cultures grown from the sparse stage in the presence vs. absence of FGF was reflected by a fivefold increase in the rate of incorporation of [35S]sulfate into proteoglycans. These FGF effects were only observed when FGF was present during the cell logarithmic growth phase, but not when it was added after chondrocyte cultures became confluent. High molecular weight, chondroitin sulfate proteoglycans synthesized by confluent chondrocyte cultures grown in the presence of FGF were slightly larger in size than that produced by confluent cultures grown in the absence of FGF. The major sulfated glycosaminoglycans associated with low molecular weight proteoglycan in FGF-exposed cultures were chondroitin sulfate, while in cultures not exposed to FGF they were chondroitin sulfate and dermatan sulfate. Regardless of whether or not cells were grown in the presence or absence of FGF, the 6S/4S disaccharide ratio of chondroitin sulfate chains associated with high and low molecular weight proteoglycans synthesized by confluent cultures was the same. These results provide evidence that when low density chondrocyte cultures maintained on plastic tissue culture dishes are grown in the presence of FGF, it results in a stimulation of the expression and stabilization of the chondrocyte phenotype once cultures become confluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号