首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokines are involved in directing the activation of natural killer (NK) cells. NK cells are involved in the recognition of cells that have been altered; thus they do not recognize specific insults to the host, but when activated, are capable of destroying infected cells directly, as well as promoting the recruitment and response of the other components of the immune system by the release of cytokines and chemokines. It is these properties that have made NK cells a critical part of innate immunity and adaptive immunity, and they play a principal role linking innate and adaptive immunity by the recruitment of an adaptive immune response to an innate immune reaction.  相似文献   

2.
Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection.  相似文献   

3.
摘要:甲状腺激素(Thyroid hormones,THs)参与免疫功能的调节,在固有免疫和适应性免疫中发挥着重要作用。THs异常分泌所致的免疫功能失调被认为参与了格雷夫斯病和桥本甲状腺炎等自身免疫性疾病的发生发展。目前,THs在固有免疫细胞(中性粒细胞、巨噬细胞、树突状细胞、自然杀伤细胞、肥大细胞)中的作用已得到了较好的阐明,但THs对适应性免疫细胞(T淋巴细胞与B淋巴细胞)的影响等方面的研究仍未引起足够的重视。因此,本研究从适应性免疫细胞的角度出发,重点讨论了THs对这些细胞的发育、分化及功能等方面的影响,为进一步理解THs调节免疫功能的作用提供新视角。  相似文献   

4.
Chromosome breakage is frequently associated with viral infection and cellular transformation, but it is also required for two processes that are crucial for the development and function of adaptive immunity: V(D)J recombination and class-switch recombination. The cellular responses that result from this type of DNA damage, which are mostly activated by the protein kinase ataxia-telangiectasia mutated (ATM), lead to cell-cycle arrest at several checkpoints and efficient DNA repair. This Review focuses on the important roles of these DNA-damage responses in the activation of innate immunity and the targeting of the innate immune response to infected or transformed cells, as well as in the development and function of adaptive immunity.  相似文献   

5.
6.
7.
Surfactant protein A (SP-A) is an innate immune molecule that regulates pathogen clearance and lung inflammation. SP-A modulates innate immune functions such as phagocytosis, cytokine production, and chemotaxis; however, little is known about regulation of adaptive immunity by SP-A. Dendritic cells (DCs) are the most potent antigen-presenting cell with the unique capacity to activate naive T cells and initiate adaptive immunity. The goal of this study was to test the hypothesis that SP-A regulates the differentiation of immature DCs into potent T cell stimulators. The data show that incubation of immature DCs for 24 h with SP-A inhibits basal- and LPS-mediated expression of major histocompatibility complex class II and CD86. Stimulation of immature DCs by SP-A also inhibits the allostimulation of T cells, enhances dextran endocytosis, and alters DC chemotaxis toward RANTES and secondary lymphoid tissue chemokine. The effects on DC phenotype and function are similar for the structurally homologous C1q, but not for SP-D. These studies demonstrate that SP-A participates in the adaptive immune response by modulating important immune functions of DCs.  相似文献   

8.
Complement and IL-12: yin and yang   总被引:1,自引:0,他引:1  
Interleukin 12 (IL-12) is central to the orchestration of cell-mediated immune responses in the innate as well as the adaptive immune system. Recent studies of the pathogenesis of diseases as disparate as measles and asthma have suggested that the complement system, itself at the interface of innate and adaptive immunity, is a biologically relevant regulator of IL-12 production. These data are reviewed here.  相似文献   

9.
Vertebrates have evolved an adaptive immune system in addition to the ancestral innate immune system. It is often assumed that a trade-off between costs and benefits of defence governs the evolution of immunological defence, but the costs and benefits specific to the adaptive immune system are poorly known. We used genetically engineered mice lacking lymphocytes (i.e. mice without adaptive, but with innate, immunity) as a model of the ancestral state in the evolution of the vertebrate immune system. To investigate if the magnitude of adaptive defence is constrained by the energetic costs of producing lymphocytes etc., we compared the basal metabolic rate of normal and lymphocyte-deficient mice. We found that lymphocyte-deficient mice had a higher basal metabolic rate than normal mice with both innate and adaptive immune defence. This suggests that the evolution of the adaptive immune system has not been constrained by energetic costs. Rather, it should have been favoured by the energy savings associated with a combination of innate and adaptive immune defence.  相似文献   

10.
The dichotomy of immunology into innate and adaptive immunity has created conceptual barriers in appreciating the intrinsic two-way interaction between immune cells. An emerging body of evidence in various models of immune rejection, including cancer, indicates an indispensable regulation of innate effector functions by adaptive immune cells. This bidirectional cooperativity in innate and adaptive immune functions has broad implications for immune responses in general and for regulating the tumor-associated inflammation that overrides the protective antitumor immunity. Mechanistic understanding of this two-way immune cross-talk could provide insights into novel strategies for designing better immunotherapy approaches against cancer and other diseases that normally defy immune control.  相似文献   

11.
Although caloric restriction (CR) apparently has beneficial effects on the immune system, its effects on the immunological function of the intestinal mucosa are little known. The present study explored the effect of CR on the innate and adaptive intestinal immunity of mice. Balb/c mice were either fed ad libitum (control) or on alternate days fed ad libitum and fasted (caloric restriction). After 4 months, an evaluation was made of IgA levels in the ileum, the gene expression for IgA and its receptor (pIgR), as well as the expression of two antimicrobial enzymes (lysozyme and phospholipase A2) and several cytokines of the intestinal mucosa. CR increased the gene expression of lysozyme and phospholipase A2. The levels of IgA were diminished in the ileum, which apparently was a consequence of the reduced transport of IgA by pIgR. In ileum, CR increased the gene expression for most cytokines, both pro- and anti-inflammatory. Hence, CR differentially modified the expression of innate and adaptive immunity mediators in the intestine.  相似文献   

12.
Hepatitis C virus (HCV) is a serious global health problem which accounts for approximately 40% of chronic liver diseases worldwide. HCV frequently establishes a persistent infection, although it is recognized and targeted by innate immunity as well as cellular and humoral immune mechanisms. This suggests that HCV has developed powerful strategies to escape elimination by innate and adaptive immunity. HCV-induced liver injury is thought to be mainly immune-mediated rather than due to direct cytopathic effects of the virus. Hence, therapeutic strategies should target those mechanisms favoring viral persistence since unspecific enhancement of host antiviral immunity may theoretically also promote liver injury. The present review summarizes our current understanding of how the hepatitis C virus interferes with the innate antiviral host-response to establish persistent infection.  相似文献   

13.
半乳糖凝集素1的免疫功能   总被引:2,自引:0,他引:2  
半乳糖凝集素为S型凝集素,因其可特异性识别β-半乳糖苷键而得名。半乳糖凝集素1是最早发现的半乳糖凝集素家族成员,它在固有免疫与适应性免疫中均发挥着重要的作用。在固有免疫中,半乳糖凝集素1调节中性粒细胞、肥大细胞、巨噬细胞的功能,进而调节免疫反应;在适应性免疫中,半乳糖凝集素1对T细胞有重要的免疫调节功能,在T细胞存活、T细胞免疫调节、T细胞免疫疾病、炎症、肿瘤发生发展及免疫逃逸中都扮演着重要的角色。  相似文献   

14.
15.
Interleukin-21 (IL-21) is a cytokine that has broad effects on both innate and adaptive immune responses. The roles of IL-21 in determining immunity to infections are currently being defined, and notably, it has been shown that IL-21 is most critical for sustaining T cell responses during chronic viral infections. This article discusses our current understanding of the immunobiology of IL-21, as well as its known and potential roles in influencing immunity to infections.  相似文献   

16.
Immune systems evolve as essential strategies to maintain homeostasis with the environment, prevent microbial assault and recycle damaged host tissues. The immune system is composed of two components, innate and adaptive immunity. The former is common to all animals while the latter consists of a vertebrate-specific system that relies on somatically derived lymphocytes and is associated with near limitless genetic diversity as well as long-term memory. Deuterostome invertebrates provide a view of immune repertoires in phyla that immediately predate the origins of vertebrates. Genomic studies in amphioxus, a cephalochordate, have revealed homologs of genes encoding most innate immune receptors found in vertebrates; however, many of the gene families have undergone dramatic expansions, greatly increasing the innate immune repertoire. In addition, domain-swapping accounts for the innovation of new predicted pathways of receptor function. In both amphioxus and Ciona, a urochordate, the VCBPs (variable region containing chitin-binding proteins), which consist of immunoglobulin V (variable) and chitin binding domains, mediate recognition through the V domains. The V domains of VCBPs in amphioxus exhibit high levels of allelic complexity that presumably relate to functional specificity. Various features of the amphioxus immune repertoire reflect novel selective pressures, which likely have resulted in innovative strategies. Functional genomic studies underscore the value of amphioxus as a model for studying innate immunity and may help reveal how unique relationships between innate immune receptors and both pathogens and symbionts factored in the evolution of adaptive immune systems.  相似文献   

17.
Estrogen receptor (ER) ligands can modulate innate and adaptive immunity and hematopoiesis, which may explain the clear sex differences in immune responses during autoimmunity, infection or trauma. Dendritic cells (DC) are antigen presenting cells important for initiation of innate and adaptive immunity, as well as immune tolerance. DC progenitors and terminally differentiated DC express ER, indicating the ER ligands may regulate DC at multiple developmental and functional stages. Although there are profound differences in innate immunity between males and females or upon systemic imposition of sex hormones, studies are just beginning to link these differences to DC. Our and others studies demonstrate that estradiol and other ER ligands regulate the homeostasis of bone marrow myeloid and lymphoid progenitors of DC, as well as DC differentiation mediated by GM-CSF and Flt3 Ligand. Since DC have a brief lifespan, these data suggest that relatively short exposures to ER ligands in vivo will alter DC numbers and intrinsic functional capacity related to their developmental state. Studies in diverse experimental models also show that agonist and antagonist ER ligands modulate DC activation and production of inflammatory mediators. These findings have implications for human health and disease since they suggest that both DC development and functional capacity will be responsive to the physiological, pharmacological and environmental ER ligands to which an individual is exposed in vivo.  相似文献   

18.
Eo SK  Lee S  Chun S  Rouse BT 《Journal of virology》2001,75(2):569-578
In this study, we examined the effects of murine chemokine DNA, as genetic adjuvants given mucosally, on the systemic and distal mucosal immune responses to plasmid DNA encoding gB of herpes simplex virus (HSV) by using the mouse model. The CC chemokines macrophage inflammatory protein 1beta (MIP-1beta) and monocyte chemotactic protein 1 (MCP-1) biased the immunity to the Th2-type pattern as judged by the ratio of immunoglobulin isotypes and interleukin-4 cytokine levels produced by CD4(+) T cells. The CXC chemokine MIP-2 and the CC chemokine MIP-1alpha, however, mounted immune responses of the Th1-type pattern, and such a response rendered recipients more resistant to HSV vaginal infection. In addition, MIP-1alpha appeared to act via the upregulation of antigen-presenting cell (APC) function and the expression of costimulatory molecules (B7-1 and B7-2), whereas MIP-2 enhanced Th1-type CD4(+) T-cell-mediated adaptive immunity by increasing gamma interferon secretion from activated NK cells. Our results emphasize the value of using the mucosal route to administer DNA modulators such as chemokines that function as adjuvants by regulating the activity of innate immunity. Our findings provide new insight into the value of CXC and CC chemokines, which act on different innate cellular components as the linkage signals between innate and adaptive immunity in mucosal DNA vaccination.  相似文献   

19.
Immune responses are generally divided into innate and adaptive responses, and the efficacy of one is thought to be independent of the other. The regulation of immune responses, however, is complex, and accumulating evidence indicates that multiple interactions between immune effector cells are common and are crucial for the initiation, as well as the outcome, of these responses. Dendritic cells, long recognized as key initiators of primary adaptive immunity, are now also seen as crucial regulators of aspects of innate immunity, in particular natural-killer-cell function. Reciprocally, natural killer cells can influence the activity of dendritic cells. Here, we review recent exciting progress in this field, and we highlight the impact of this cellular crosstalk on the design of immune-based therapies for control of infection and cancer.  相似文献   

20.
《Cytokine》2015,76(2):256-260
SREC-I is a class F scavenger receptor with key role in the immune response, particularly in antigen presenting cell (APC) such as macrophages and dendritic cells (DC). This receptor is able to mediate engulfment of dead cells as well as endocytosis of heat shock protein (HSP)–antigen complexes. SREC-I could thus potentially mediate the tolerizing influence of apoptotic cells or the immunostimulatory effects of HSP–peptide complexes, depending on context. This receptor was able to mediate presentation of external antigens, bound to HSPs through both the class II pathway as well as cross presentation via MHC class I complexes. In addition to its recently established role in adaptive immunity, emerging studies are indicating a broad role in innate immunity and regulation of cell signaling through Toll Like Receptors (TLR). SREC-I may thus play a key role in APC function by coordinating immune responses to internal and external antigens in APC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号