首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— Synaptic vesicles were isolated from rat cerebral cortex after an intraventricular injection of [3H]acetate. The labelled substances bound to the synaptic vesicles were released by exposure to acid, separated from the vesicle membranes by Sephadex column chromatography and identified by thin-layer chromatography and thin-layer electrophoresis. The three major peaks of radioactivity were glutamate, glutamine and gamma-aminobutyric acid. Their presence in synaptic vesicles is consistent with the concept of an integration of energy metabolism, membrane regulation and synaptic transmission.  相似文献   

2.
EFFECTS OF AMINO-OXYACETIC ACID ON [3H]GABA UPTAKE BY RAT BRAIN SLICES   总被引:1,自引:0,他引:1  
Abstract— The effect of amino-oxyacetic acid on the uptake of [3H]GABA by rat brain slices was studied. When added simultaneously with [3H]GABA, amino-oxyacetic acid had no significant effect on [3H]GABA uptake. However, preincubation of brain slices with amino-oxyacetic acid prior to addition of [3H]GABA produced inhibition of uptake, which increased with longer duration of preincubation. The inhibitory effect of amino-oxyacetic acid was maximal at 2 mM concentration and concentrations sufficient to inhibit significantly GABA:glutamate transaminase (10--6 M) had no effect on [3H]GABA uptake. D-Cycloserine and β-hydrazino-propionic acid also inhibited [3H]GABA uptake, but the amounts required were considerably in excess of those needed to inhibit GABA:glutamate transaminase. 4-Deoxypyridoxine inhibited [3H]GABA uptake, whether given in vivo or in vitro , and the inhibitory effect of amino-oxyacetic acid was reversed with pyridoxine. GABA transport appears to be dependent on pyridoxal phosphate and interference with this function of the vitamin is suggested as the basis for the inhibitory effect of amino-oxyacetic acid on [3H]GABA uptake.  相似文献   

3.
—A rapid accumulation of [3H]GABA occurs in slices of rat cerebral cortex incubated at 25° or 37° in a medium containing [3H]GABA. Tissue medium ratios of almost 100:1 are attained after a 60 min incubation at 25°. At the same temperature no labelled metabolites of GABA were found in the tissue or the medium. The process responsible for [3H]GABA uptake has many of the properties of an active transport mechanism: it is temperature sensitive, requires the presence of sodium ions in the external medium, is inhibited by dinitrophenol and ouabain, and shows saturation kinetics. The estimated Km value for GABA is 2·2 × 10?5m , and Vmax is 0·115 μmoles/min/g cortex. There is only negligible efflux of the accumulated [3H]GABA when cortical slices are exposed to a GABA-free medium. [3H]GABA uptake was not affected by the presence of large molar excesses of glycine, l -glutamic acid, l -aspartic acid, or β-aminobutyrate, but was inhibited in the presence of l -alanine, l -histidine, β-hydroxy-GABA and β-guanidinopropionate. It is suggested that the GABA uptake system may represent a possible mechanism for the inactivation of GABA or some related substance at inhibitory synapses in the cortex.  相似文献   

4.
Abstract— Microsomal, mitochondrial, synaptosomal and synaptic vesicle fractions of rat brain took up [3H-methyl]choline by a similar carrier-mediated transport system. The apparent Km for the uptake of [3H-methyl]choline in these subcellular fractions was about 5 × 10?5 M. Choline uptake was also observed in microsomal fractions prepared from liver and skeletal muscle. Virtually identical kinetic properties for [3H-methyl]choline transport were found in the synaptosomal fractions prepared from the whole brain, cerebellum or basal ganglia. Countertransport of [3H-methyl]choline from the synaptosomal fraction was demonstrated against a concentration gradient. HC-3 was a competitive inhibitor of the uptake of [3H-methyl]choline in brain microsomal, synaptosomal and mitochondria] fractions with respective values for Ki of 4.0, 2.1 and 2.3 × 10?5 M. HC-15 was a competitive inhibitor of the transport of [3H-methyl]choline in the synaptosomal fraction, with a Ki of 1.7 × 10?4 M. Upon entry into the microsomal fraction, 74 per cent of the radioactivity could be recovered as unaltered choline, 10 per cent as phosphorylcholine, 1.5 per cent as acetylcholine and 2.5 per cent as phospholipid. Choline acetyltransferase (EC 2.3.1.6) was assayed with [14C]acetylCoA in synaptosomal fractions prepared from basal ganglia and cerebellum, and in the 31,000 g supernatant fraction of a rat brain homogenate. Enzyme activity was 11-fold greater in the synaptosomal fraction from the basal ganglia than in that from the cerebellum. HC-3 did not inhibit choline acetyltransferase and there was no evidence for acetylation of HC-3. Our findings suggest that choline uptake is a ubiquitous property of membranes in the CNS and cannot serve to distinguish cholinergic nerve endings and their synaptic vesicles.  相似文献   

5.
6.
The uptake and storage of L-[3H]norepinephrine at various stages of development was examined in homogenates of rat brain. For the adult animal, active uptake accounted for 80 per cent of the total uptake. At 14 days of gestation, no active uptake was demonstrable At 18 days of gestation, saturable uptake of L-[3H]norepinephrine with a Km of 3 × 10 ?7m was first demonstrable; the Km value did not vary during subsequent development. The Vmax. of uptake increased five-fold between 18 days of gestation and 28 days postnatally, at which stage it was the same as the adult value. The development of saturable uptake paralleled but preceded the increase in endogenous norepinephrine. When homogenates were incubated with l -[3H]norepinephrine and subjected to centrifugation on linear sucrose gradients, there was a peak of tritium in the synaptosomal fractions; the magnitude of the peak increased with maturation of the brain. The increase in the peak of tritium paralleled the increase in particulate LDH activity and was distinct from the peak of MAO activity. Desipramine, a compound that blocks the initial uptake of norepinephrine, first exhibited inhibition of uptake at 19 days of gestation; the degree of inhibition did not vary during subsequent development. In contrast, reserpine, a compound which inhibits the intra-neuronal storage of norepinephrine, exhibited a progressive increase of inhibition with maturation of the brain at and subsequent to 19 days of gestation.  相似文献   

7.
Abstract— The uptake of [35S]cystine at 37°C by synaptosomal fractions isolated from adult rat cerebrum can be divided into two components. About 60% of the uptake is due to binding to synaptosomal proteins while the remainder exists as a free amino acid pool. Chemical analysis of this soluble component indicates that considerable reduction of cystine to cysteine occurs with 75% or more of the labeled molecular species being cysteine. The process involved in the uptake into the soluble pool was composed of two saturable systems with apparent K m values of 0.14 and 1.4 m m . The low K m system was sodium and oxygen independent but inhibited by dinitrophenol. Dibasic amino acids, lysine, arginine and ornithine, did not inhibit cystine uptake. The characteristics of cystine uptake by synaptosomes from newborn brain are very similar to those of adult brain.  相似文献   

8.
Abstract— Slices from various regions of rat brain, incubated at 25°C, rapidly accumulate [3H]GABA from the surrounding medium until after 60min tissue:medium ratios as high as 300 may be achieved. Kinetic analysis has demonstrated two distinct uptake systems for GABA in all the brain regions examined. One system has a relatively high substrate affinity ( Km = 1.2 ± 10-5 M) while the other has a lower affinity ( Km = 4 ± 10-4 M). Studies at low GABA concentration (5 ± 10-8 M), as well as estimates of maximum velocities, have shown that the distribution of the high affinity uptake system is heterogeneous. Cortex, hypothala mus, midbrain and hippocampus have relatively high uptake rates while the striatum, cerebellum and pons and medulla have a lower uptake rate. Maximum velocities for the low affinity uptake system show much less regional variation.
Lithium, either added to the incubation medium or fed to rats, had no effect on the uptake of GABA by cortical slices.  相似文献   

9.
A fraction containing neurotransmitter storage vesicles was isolated from rat whole brain and brain regions, and the uptakes of [3H]norepinephrine and [3H]serotonin were determined in vitro. Norepinephrine uptake in vesicle preparations from corpus striatum was higher than in prep arations from cerebral cortex, and uptake in vesicles from the remainder (midbrain + brainstem + cerebellum) was intermediate. The Km for norepinephrine uptake was the same in the three brain regions, but the regions differed in maximal uptake capacity by factors which paralleled total catecholamine concentration rather than content of norepinephrine alone. Intracisternal administration of 6-hydroxydopamine, but not of 5,6-dihydroxytryptamine, reduced vesicular norepinephrine uptake, and pretreat-ment with desmethylimipramine (which protects specifically norepinephrine neurons but not dopamine neurons from the 6-hydroxydopamine) only partially prevented the loss of vesicular norepinephrine uptake. These studies indicate that uptake of norepinephrine by rat brain vesicle preparations occurs in vesicles from norepinephrine and dopamine neurons, but probably not in vesicles from serotonin neurons. Uptake of serotonin by brain vesicle preparations exhibited time, temperature and ATP-Mg2+ requirements nearly identical to those of norepinephrine uptake. The affinity of serotonin uptake matched that of serotonin for inhibition of norepinephrine uptake, and the maximal capacity was the same for serotonin as for norepinephrine. Norepinephrine, dopamine and reserpine inhibited serotonin uptake in a purely competitive fashion, with Kis similar to those for inhibition of norepinephrine uptake. Whereas 5,6-dihydroxytryptamine treatment reduced synaptosomal serotonin uptake but not vesicular serotonin uptake, 6-hydroxydopamine reduced vesicular serotonin uptake in the absence of reductions in synaptosomal serotonin uptake. Thus, in this preparation, serotonin appears to be taken up in vitro into catecholamine vesicles, rather than into serotonin vesicles.  相似文献   

10.
§-Aminolaevulinic acid (§-ALA) is an omega amino acid which can be considered as an analogue of γ-aminobutyric acid (GABA). We have examined the effect of §-ALA on [3H]GABA uptake and release in the synaptosome fraction of rat cerebral cortex and report: (1) High concentrations of §-ALA (0.75-5 mM) stimulated [3H]GABA release very markedly, the stimulation with 1mM and 5mM-§-ALA exceeding the maximum obtainable with unlabelled GABA; (2) Low concentrations of §-ALA (0.1-0.5 mM) produced little stimulation of [3H]GABA efflux, less than that produced by similar concentrations of unlabelled GABA; (3) 0.1 mM-§-ALA reduced the stimulation of [3H]GABA efflux elicited by 55 mM-K+ and the combination of 1 mM-§-ALA and 55mM-K+ produced a lower stimulation of efflux than 1 mM-§-ALA alone; (4) §-ALA inhibits [3H]GABA uptake in a linearly competitive fashion and inhibition is maximal at 0.5 mM-§-ALA. These results are discussed in relation to the neuronal high affinity GABA transport mechanism and inhibition of the synaptosomal Na+ and K+ -dependent ATPase. It is also postulated that §-ALA increases the chloride conductance of the synaptosomal membrane, possibly by acting on presynaptic GABA receptors.  相似文献   

11.
Abstract— By using a combination of subcutaneous and intraventricular injections of [14C]uridine and [3H]methyl- l -methionine we have obtained maximum incorporation in about 40 min of both radioactive precursors into nuclear RNA from rat brain. In this nuclear fraction we found at least two different types of RNA that were rapidly labelled. One of them incorporated both [14C]uridine and [3H]methyl groups and seemed to correspond to species of rRNA and their precursors. The other RNA fraction was less methylated or non-methylated and exhibited sedimentation coefficients distributed along a continuous 8–30 % sucrose density gradient. At least part of the latter type of RNA very probably was mRNA, but much of it must conespond to a different RNA similar to that recently described in HeLa cells by P enman , V esco and P enman (1968).
We also found that labelled 185 and 285 rRNA components began leaving the nucleus for the cytoplasm within 24 to 33 min after the radioactive precursors had been injected, and, in the cytoplasmic fraction, the patterns of incorporation for [14C]uridine and [3H]-methyl groups were similar for the 18S and 28S rRNA components. We estimate that in this fraction of rat brain the 18S rRNA component was 1·4 times more methylated than the 28S component. We also detected a lower sedimentation coefficient for the non- or slightly methylated, species of soluble RNA found in the cytoplasmic fraction.  相似文献   

12.
13.
The depolarization-induced, calcium-dependent release of [3H]ACh from hippocampal synaptosomes was studied in a superfusion system. Release increased, with increasing depolarization. Barium and strontium effectively substituted for calcium during the depolarization, but magnesium inhibited the release. Releasable [3H]ACh is derived from the sodium-dependent component of the [3H]choline uptake which points out the physiologic importance of sodium-dependent choline transport. It is concluded that [3H]ACh release in this system has the same properties as neurotransmitter release in many other systems. Previous studies have shown that treatments which alter the activity of cholinergic neurons in vivo result in parallel changes in sodium-dependent choline uptake in vitro. When synaptosomes were utilized from animals treated to reduce cholinergic activity, there was a reduced release following the reduced uptake. Conversely, when synaptosomes were taken from animals treated to increase sodium-dependent choline uptake, there was an increase in the release. It is concluded that the changes in sodium-dependent choline uptake in vitro consequent to changes in neuronal activity in vivo result in parallel changes in releasable ACh. A comparison was made between the effect of a number of ions and agents on release and their effect on the in vitro, depolarization-induced activation of sodium-dependent choline uptake. Barium and strontium, ions which substitute for calcium in the release process, support the in vitro activation of uptake. Vinblastine and Bay a 1040, compounds which block release, prevented the in vitro activation of sodium-dependent choline uptake. However, magnesium blocked release in a dose-dependent manner, but did not block the activation of uptake in vitro. Rather, magnesium substituted for calcium and supported the activation of uptake in a dose-dependent fashion. It is concluded that acetylcholine release is not necessary for the activation of choline uptake.  相似文献   

14.
Abstract— A new procedure is described for the estimation of [3H]noradrenaline (NA) and its major metabolites free and conjugated 3-methoxy-4-hydroxyphenylglycol (MOPEG) and free and conjugated 3,4-dihydroxyphenylglycol (DOPEGI in the rat brain. The procedure involves adsorption on to alumina, cation exchange chromatography. enzymatic hydrolysis of conjugates and thin-layer-chromatography after intraventricular (IVT) or intravenous injection of [3H]tyrosine. In a time-course study the formation and accumulation of the metabolites have been measured from 15min to 23h after IVT injection of [3H]tyrosine. [3H]MOPEG and [3H]DOPEG were found in almost equal amounts during the synthesis phase of [3H]NA as well as during the storage and disappearance phase of [3H]NA. The maximum levels of conjugated [3H]MOPEG and conjugated [3H]DOPEG were found 2 h after IVT [3H]tyrosine. At this time interval the levels of free [3H]MOPEG and free [3H]DOPEG amounted to 25% and 11%, respectively of the corresponding conjugates. Increasing doses of IVT injected [3H]tyrosine (10-90 °Ci) revealed that the accumulation of [3H]NA and metabolites was linear up to about 50 °Ci. Following intravenous instead of IVT injection of [3H]tyrosine. much higher doses (325 °Ci) were needed to obtain measurable amounts of total [3H]MOPEG and [3H]DOPEG-SO4 in the rat brain. The formation of labelled NA metabolites from [3H]NA in the rat brain in vim measured as total [3H]MOPEG and [3H]DOPEG-SO4 was influenced by drugs affecting [3H]NA synthesis, release and metabolism. Synthesis inhibition with a-methyltyrosine (250mg-kg?1) or FLA-63 (30mg-kg?1) and inhibition of monoamine oxidase with pargyline (75mg-kg?1) or clorgyline (2mg-kg?1) strongly decreased the accumulation of total [3H]MOPEG and [3H]DOPEG-SO4. Noradrenaline receptor blockade with phenoxybenzamine (20mg-kg?1) increased both total [3H]MOPEG and [3H]DOPEG-SO4 to about 160% of the control values. NA release and uptake inhibition induced by d-amphetamine (10mg-k?1) or phenylethylamine (two doses of 80mg-kg?1) decrease strongly the levels of [3H]NA and [3H]DOPEG-SO4. whereas total [3H]MOPEG was only very slightly decreased or even increased as compared to controls.  相似文献   

15.
Abstract— A microsomal fraction prepared from rat dorsal spinal nerve roots accumulated 45Ca by a temperature–and ATP-dependent mechanism. Uptake, which was maximal at pH 7.2–7.4, was potentiated 4-fold by 8 m m -oxalate and was linear over a 20 min incubation period. Ca uptake was not inhibited by sodium azide or by oligomycin and only slightly by ruthenium red suggesting that it was not of mitochondrial origin. On a sucrose density gradient the microsomal fraction equilibrated at between 0.25 m - and 0.65 m -sucrose but, using a discontinuous gradient over this range, no fraction enriched in Ca-accumulating activity could be separated. The possibility is discussed that the Ca-accumulating microsomes may be derived from smooth endoplasmic reticulum.  相似文献   

16.
Abstract— At 25°C the accumulation of [3H] dl -2,4-diaminobutyric acid (DABA) into small rat cortical slices was linear with time and a tissue: medium ratio of 35:1 was attained after 60 min. At 37°C the uptake was no longer linear and the tissue: medium ratio at 60 min was 66:1. Uptake was unaffected by the addition of 10 μ m -AOAA and dependent on the presence of Na+ in the incubation media. The uptake was shown to have a high affinity component with a K m of 20.7 μ m and a V max of 28.6 nmol/g/min. IC50's for the inhibition of [3H]DABA uptake by dl -DABA, l -DABA and GABA were 80, 40 and 17 μ m respectively. Two m m β -alanine, however, caused less than 13% inhibition of [3H]DABA uptake. Electron microscopic autoradiographs showed the [3H]DABA to be accumulated by 22% of the identifiable nerve terminals and, after 14 days exposure, the density of silver grains over nerve terminals was 36–38 times higher than that over the rest of the electron micrograph. On the other hand, [3H]DABA was not taken up into rat sensory ganglia and light level autoradiography showed the small amount of [3H]DABA accumulated by the ganglia to be evenly distributed throughout the tissue. Both electrical stimulation for 30 s and exposure of the tissue to a medium containing 47 m m -K+ for 2 min caused a marked increase in the efflux of [3H]DABA from the tissue. Both these effects were abolished by a reduction in Ca2+ concentration and an increase in the Mg2+ concentration of the superfusing medium. These results suggest that l -DABA acts as a 'false transmitter' for the neuronal uptake, storage and release of GABA.  相似文献   

17.
—Double-labeled sulfatide containing [3-3H]lignoceric acid and [35S]sulfate was synthesized and injected intracerebrally into 28-day-old rats. The 3H-labeled sulfatide was synthesized by condensing (RS)-[3-3H]lignoceroyl chloride with lysosulfatide which had been obtained by saponification of sulfatide. The 35S-labeled sulfatide was synthesized by using [35S]sulfuric acid for sulfating 2′, 4′, 6′-tri-benzoyl-galactosyl N-fatty acyl, N-benzoyl-3-0-benzoyl-sphingosine, which had been obtained by per-benzoylation followed by solvolysis of calf brain nonhydroxycerebrosides. The perbenzoylated [35S]sul-fatide was then subjected to mild alkaline saponification. Eight hours following the injection, the brain lipids contained various radioactive sphingolipids in addition to sulfatides. Fourteen per cent of the injected 3H was recovered in total lipids, and 26% of this was found in sulfatide. Nonhydroxy- and hydroxyceramides, nonhydroxy- and hydroxycerebrosides, and polar lipids contained 7, 1, 8, 3, and 22 per cent of the 3H found in total lipids, respectively. On the other hand, only 6% of the 35S injected was recovered in total lipids; 63% of this was found in sulfatide, 5% in a mixture of seminolipid and cholesterol sulfate and 10% in a water-soluble material.  相似文献   

18.
A fraction containing synaptic vesicles was isolated from rat heart by differential centrifugation, and the uptake of l-[3H]norepinephrine was studied in vitro., Uptake was highly dependent upon time and temperature, and was linear for 6 min at 30° or 4 min at 37°C. About 80% of the measured uptake required both ATP and Mg2+ and was inhibited by nanomolar concentrations of reserpine; no inhibition was obtained with cocaine. These properties are characteristic of storage vesicle uptake as opposed to synaptic membrane uptake. Uptake of norepinephrine was saturable and displayed a single Km value of 2 μM. The uptake was completely stereospecific, as unlabeled dl-norepinephrine was less than half as effective as unlabeled l-norepinephrine in reducing uptake of l-[3H]norepinephrine. Norepinephrine uptake could be inhibited by various phenethylamines and indoleamines following the rank order: reserpine > harmaline > 5-hydroxytryptamine > dopamine > norepinephrine. The vesicle preparation also incorporated [3H]5-hydroxytryptamine and [3H]dopamine. 5-Hydroxytryptamine uptake displayed a Km of 0.5 μM and a maximal uptake equivalent to that seen with norepineph-rine; dopamine uptake followed complex kinetics. Administration of reserpine in vivo or destruction of sympathetic neurons by long-term guanethidine treatment both eliminated the ability of the preparation to take up norepinephrine. Synaptic vesicles of cardiac sympathetic neurons thus resemble vesicles prepared from other central and peripheral catecholaminergic tissues; this method may be used readily to examine drug effects on rat heart synaptic vesicle function.  相似文献   

19.
—The incorporation of d -[3H]glucosamine into the nervous specific sialoglycoprotein GP-350 has been studied in adult rat brain. Both the 100,000 g supernatant fluid and the 12,500 g pellet were used for the investigation, since GP-350 could only be detected in the soluble cell fraction (Van Nieuw Amerongen et al., 1972) and in the synaptosomal membranes, sedimenting in the crude mitochondrial fraction (Van Nieuw Amerongen & Roukema , 1973, 1974). GP-350 was separated from the other proteins by polyacrylamide gel electrophoresis at pH 7.5 and the incorporation of radioactivity into GP-350 was measured at different time intervals, ranging from 1 to 96 h after the administration of the radioisotope. The maximal incorporation of radioactivity into the soluble GP-350 was obtained after about 2 h and into the membrane-bound GP-350 after about 3 h. After 2 h there is a very rapid decrease of the radioactivity of GP-350 from the soluble cell fraction (up to 70 per cent within 2 h). Thereafter the disappearance is more gradual and of the same order as that found for the membrane-bound fraction of GP-350. The half-life of the soluble GP-350 was estimated to be 19 h and for the membrane-bound GP-350 a value of 18 h was calculated. Compared to the total pool of brain (glyco) proteins and specific nervous (glyco) proteins GP-350 has a very rapid turnover. The rapid initial decrease of the radioactivity from the soluble GP-350 may be interpreted in terms of a rapid transport of the newly-synthesized GP-350 from the cytoplasma of the perikaryon to the membranes of the synaptic region by an axoplasmic flow.  相似文献   

20.
Abstract— Subcellular fractions were isolated from tissue incubated in [3H]choline with or without the addition of 33 mM-KCl. Radioactive and bioassayable ACh were measured in the synaptosomes, synaptosomal cytoplasm and in the vesicles. After incubation with KCI the vesicles, as isolated, contained ACh of a lower specific activity than the cytoplasmic ACh. Therefore the vesicle fraction as isolated does not represent the source of the high specific activity ACh released upon K+ stimulation. However the vesicle fraction is heterogeneous. Most of the bioassayable ACh but little of the radioactive ACh in the vesicles passed through iso-osmotic Sephadex columns. These results raise the question of the existence of vesicles which contain highly radioactive ACh but which lose it during their isolation by current methods. Different possible forms of heterogeneity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号