首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critical to biological processes such as membrane fusion and secretion, ion-lipid interactions at the membrane-water interface still raise many unanswered questions. Using reconstituted phosphatidylcholine membranes, we confirm here that multilamellar vesicles swell in salt solutions, a direct indication that salt modifies the interactions between neighboring membranes. By varying sample histories, and by comparing with data from ion carrier-containing bilayers, we eliminate the possibility that swelling is an equilibration artifact. Although both attractive and repulsive forces could be modified by salt, we show experimentally that swelling is driven primarily by weakening of the van der Waals attraction. To isolate the effect of salt on van der Waals interactions, we focus on high salt concentrations at which any possible electrostatic interactions are screened. By analysis of X-ray diffraction data, we show that salt does not alter membrane structure or bending rigidity, eliminating the possibility that repulsive fluctuation forces change with salt. By measuring changes in interbilayer separation with applied osmotic stress, we have determined, using the standard paradigm for bilayer interactions, that 1 M concentrations of KBr or KCl decrease the van der Waals strength by 50%. By weakening van der Waals attractions, salt increases energy barriers to membrane contact, possibly affecting cellular communication and biological signaling.  相似文献   

2.
We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca2+ or Mg2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ~1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering.  相似文献   

3.
Here, we report the first direct observation of Van der Waals' attraction between biomembrane capsules using measurements of the free energy reduction per unit area of membrane-membrane contact formation. In these studies, the membrane capsules were reconstituted neutral (egg phosphatidylcholine) lipid bilayers of giant (greater than 10(-3) cm diam) vesicles. Micromanipulation methods were used to select and maneuver two vesicles into proximity for contact; after adhesion was allowed to occur, the extent of contact formation was regulated through the vesicle membrane tensions that were controlled by micropipette suction. The free energy reduction per unit area of contact formation was proportional to the membrane tension multiplied by a simple function of the pipette and vesicle dimensions. The free energy potential for Van der Waals attraction between the neutral bilayers in 120 mM NaCl solutions was 1.5 X 10(-2) ergs/cm2. Also, when human serum albumin was added to the medium in the range of 0-1 mg/ml, the free energy potential for bilayer-bilayer adhesion was not affected. Using published values for equilibrium spacing between lipid bilayers in multilamellar lipid-water dispersions and the theoretical equation for van der Waals attraction between continuous dielectric layers, we calculated the value for the Hamaker coefficient of the Van der Waals attraction to be 5.8 X 10(-14) ergs.  相似文献   

4.
With the aim of gaining more insight into the forces and molecular mechanisms associated with bilayer adhesion and fusion, the surface forces apparatus (SFA) was used for measuring the forces and deformations of interacting supported lipid bilayers. Concerning adhesion, we find that the adhesion between two bilayers can be progressively increased by up to two orders of magnitude if they are stressed to expose more hydrophobic groups. Concerning fusion, we find that the most important force leading to direct fusion is the hydrophobic attraction acting between the (exposed) hydrophobic interiors of bilayers; however, the occurrence of fusion is not simply related to the strength of the attractive interbilayer forces but also to the internal bilayer stresses (intrabilayer forces). For all the bilayer systems studied, a single basic fusion mechanism was found in which the bilayers do not "overcome" their short-range repulsive steric-hydration forces. Instead, local bilayer deformations allow these repulsive forces to be "bypassed" via a mechanism that is like a first-order phase transition, with a sudden instability occurring at some critical surface separation. Some very slow relaxation processes were observed for fluid bilayers in adhesive contact, suggestive of constrained lipid diffusion within the contact zone.  相似文献   

5.
Dimethyl sulfoxide (DMSO) has been broadly used in biology as a cosolvent, a cryoprotectant, and an enhancer of membrane permeability, leading to the general assumption that DMSO-induced structural changes in cell membranes and their hydration water play important functional roles. Although the effects of DMSO on the membrane structure and the headgroup dehydration have been extensively studied, the mechanism by which DMSO invokes its effect on lipid membranes and the direct role of water in this process are unresolved. By directly probing the translational water diffusivity near unconfined lipid vesicle surfaces, the lipid headgroup mobility, and the repeat distances in multilamellar vesicles, we found that DMSO exclusively weakens the surface water network near the lipid membrane at a bulk DMSO mole fraction (XDMSO) of <0.1, regardless of the lipid composition and the lipid phase. Specifically, DMSO was found to effectively destabilize the hydration water structure at the lipid membrane surface at XDMSO <0.1, lower the energetic barrier to dehydrate this surface water, whose displacement otherwise requires a higher activation energy, consequently yielding compressed interbilayer distances in multilamellar vesicles at equilibrium with unaltered bilayer thicknesses. At XDMSO >0.1, DMSO enters the lipid interface and restricts the lipid headgroup motion. We postulate that DMSO acts as an efficient cryoprotectant even at low concentrations by exclusively disrupting the water network near the lipid membrane surface, weakening the cohesion between water and adhesion of water to the lipid headgroups, and so mitigating the stress induced by the volume change of water during freeze-thaw.  相似文献   

6.
Large unilamellar vesicles composed of lipids with different hydration properties were prepared by the extrusion technique. Vesicles were composed of dioleoylphosphatidylcholine in combination with either 0.5 mol % monooleoylphosphatidylcholine or different molar ratios of dilauroylphosphatidylethanolamine. Fusion was revealed via a fluorescence assay for contents mixing and leakage, a fluorescent lipid probe assay for membrane mixing, and quasi-elastic light scattering to detect vesicle size growth. As the percentage of poorly hydrating phosphatidylethanolamine increased, the concentration of poly(ethylene glycol) (PEG) required to induce fusion decreased. From differential scanning calorimetry studies of membrane-phase behavior and X-ray diffraction monitoring of phase structure in PEG, it was concluded that PEG did not induce a hexagonal-phase transition or lamellar-phase separation. Electron density profiles derived from X-ray diffraction studies of multi- and unilamellar vesicles indicated that the water layer between vesicles had a thickness of approximately 5 A at PEG concentrations at which vesicles were first induced to fuse. At this distance of separation, the choline headgroups from apposing bilayers are in near-molecular contact. Since pure phosphatidylcholine vesicles did not fuse at this interbilayer spacing, a reduction in the interbilayer water layer to a critical width of approximately 2 water molecules may contribute to but is not sufficient to produce PEG-mediated fusion of phospholipid membranes. Comparison of these results with other results from this laboratory also indicates that, while close contact between bilayers promotes fusion, near-molecular contact is apparently not absolutely necessary to bring about fusion. A tentative model is presented to account for these results.  相似文献   

7.
Planar model membranes, like supported lipid bilayers and surface-tethered vesicles, have been proven to be useful tools for the investigation of complex biological functions in a significantly less complex membrane environment. In this study, we introduce a supported double membrane system that should be useful for studies that target biological processes in the proximity of two lipid bilayers such as the periplasm of bacteria and mitochondria or the small cleft between pre- and postsynaptic neuronal membranes. Large unilamellar vesicles (LUV) were tethered to a preformed supported bilayer by a biotin–streptavidin tether. We show from single particle tracking (SPT) experiments that these vesicle are mobile above the plane of the supported membrane. At higher concentrations, the tethered vesicles fuse to form a second continuous bilayer on top of the supported bilayer. The distance between the two bilayers was determined by fluorescence interference contrast (FLIC) microscopy to be between 16 and 24 nm. The lateral diffusion of labeled lipids in the second bilayer was very similar to that in supported membranes. SPT experiments with reconstituted syntaxin-1A show that the mobility of transmembrane proteins was not improved when compared with solid supported membranes.  相似文献   

8.
Membrane fusion of a phospholipid vesicle with a planar lipid bilayer is preceded by an initial prefusion stage in which a region of the vesicle membrane adheres to the planar membrane. A resonance energy transfer (RET) imaging microscope, with measured spectral transfer functions and a pair of radiometrically calibrated video cameras, was used to determine both the area of the contact region and the distances between the membranes within this zone. Large vesicles (5-20 microns diam) were labeled with the donor fluorophore coumarin- phosphatidylethanolamine (PE), while the planar membrane was labeled with the acceptor rhodamine-PE. The donor was excited with 390 nm light, and separate images of donor and acceptor emission were formed by the microscope. Distances between the membranes at each location in the image were determined from the RET rate constant (kt) computed from the acceptor:donor emission intensity ratio. In the absence of an osmotic gradient, the vesicles stably adhered to the planar membrane, and the dyes did not migrate between membranes. The region of contact was detected as an area of planar membrane, coincident with the vesicle image, over which rhodamine fluorescence was sensitized by RET. The total area of the contact region depended biphasically on the Ca2+ concentration, but the distance between the bilayers in this zone decreased with increasing [Ca2+]. The changes in area and separation were probably related to divalent cation effects on electrostatic screening and binding to charged membranes. At each [Ca2+], the intermembrane separation varied between 1 and 6 nm within each contact region, indicating membrane undulation prior to adhesion. Intermembrane separation distances < or = 2 nm were localized to discrete sites that formed in an ordered arrangement throughout the contact region. The area of the contact region occupied by these punctate attachment sites was increased at high [Ca2+]. Membrane fusion may be initiated at these sites of closest membrane apposition.  相似文献   

9.
Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma membrane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion between the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is calibrated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer experiments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane mechanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE complex is able to bring a typical synaptic vesicle to within a distance of ∼3 nm from the membrane. Further addition of SNARE complexes shortens this distance, but an overdocked state of >4–6 SNAREs actually increases the equilibrium distance.  相似文献   

10.
Although the importance of a SNARE complex in neurotransmitter release is widely accepted, there exist different views on how the complex promotes fusion. One hypothesis is that the SNARE complex’s ability to bring membranes into contact is sufficient for fusion, another points to possible roles of juxtamembrane regions (JMRs) and transmembrane domains (TMDs) in catalyzing lipid rearrangement, and another notes the complex’s presumed ability to bend membranes near the point of contact. Here, we performed experiments with highly curved vesicles brought into contact using low concentrations of polyethylene glycol (PEG) to investigate the influence of the synaptobrevin (SB) TMD with an attached JMR (SB-JMR-TMD) on the rates of stalk and pore formation during vesicle fusion. SB-JMR-TMD enhanced the rates of stalk and fusion pore (FP) formation in a sharply sigmoidal fashion. We observed an optimal influence at an average of three peptides per vesicle, but only with phosphatidylserine (PS)-containing vesicles. Approximately three SB-JMR-TMDs per vesicle optimally ordered the bilayer interior and excluded water in a similar sigmoidal fashion. The catalytic influences of hexadecane and SB-JMR-TMD on fusion kinetics showed little in common, suggesting different mechanisms. Both kinetic and membrane structure measurements support the hypotheses that SB-JMR-TMD 1) catalyzes initial intermediate formation as a result of its basic JMR disrupting ordered interbilayer water and permitting closer interbilayer approach, and 2) catalyzes pore formation by forming a membrane-spanning complex that increases curvature stress at the circumference of the hemifused diaphragm of the prepore intermediate state.  相似文献   

11.
We use membrane-anchored DNA as model adhesion receptors between lipid vesicles. By studying the thermal stability of DNA duplex formation, which tethers the vesicles into superstructures, we show that the melting temperature of a 10-base DNA sequence is dependent on the lipid composition of the tethered vesicles. We propose a simple model that describes how the intermembrane interactions tilt the free energy landscape for DNA binding. From our model, we estimate the area per DNA in the binding sites between vesicles and also the total area of the adhesion plaques. We find that vesicles containing a small proportion of cationic lipid that are modified with membrane-anchored DNA can be reversibly tethered by specific DNA interactions and that the DNA also induces a small attraction between these membranes, which stabilizes the DNA duplex. By increasing the equilibrium intermembrane distance on binding, we show that intermembrane interactions become negligible for the binding thermodynamics of the DNA and hence the thermal stability of vesicle aggregates becomes independent of lipid composition at large enough intervesicle separations. We discuss the implications of our findings with regards to cell adhesion and fusion receptors, and the programmable self-assembly of nano-structured materials by DNA hybridization.  相似文献   

12.
We have examined the phase diagram of dipalmitoylphosphatidylcholine (DPPC)--cholesterol-water mixtures at low cholesterol content, and report phase separation between 3 and 10 mol% cholesterol. The two lamellar phases at equilibrium in this region appear to be pure DPPC and 11 mol% cholesterol in DPPC. For these two lamellar phases, which are made up of alternating layers of water and bimolecular lipid leaflets, we have measured the forces of interaction between leaflets and the lateral pressure and compressibility of the leaflets. Both bilayers experience a strong repulsive force when forced together only a few ?ngstr?ms (1 A = 0.1 nm) closer than their maximum separation in excess water. However, the presence of 11 mol% cholesterol causes the bilayers to move apart of 35-A separation from the 19-A characteristic of pure DPPC in excess water. This swelling may result from a decrease in van der Waals attraction between bilayers or from an increase in bilayer repulsion. Differences in bilayer interaction can be a cause for phase separation. More importantly these differences can cause changes in the composition of regions of membranes approaching contact. At 11 mol%, cholesterol substantially increases the lateral compressibility of DPPC bilayers leading to higher lateral density fluctuations and potentially higher bilayer permeability.  相似文献   

13.
We have employed an amphiphilic fluorescent probe to elucidate the mechanism by which a class of oxyethylene-oxypropylene copolymers catalyzes the insertion of hydrophobic or amphiphilic molecules into membranes. The rate of binding can be accelerated by over two orders of magnitude in the presence of the catalyst which does not itself disrupt the lipid bilayer. The rate of probe binding to lipid vesicles does not depend on the lipid concentration in the presence or absence of catalyst but is linearly related to the concentration of the catalyst. Probe binding to the polyol surfactant appears to be a component of the catalytic mechanism and equilibrium binding parameters can be determined; these are used to indirectly establish quantitative binding parameters for the probe to the vesicle membrane. The polyol surfactant is also shown to catalyze insertion of the probe into the outer leaflet of a hemispherical lipid bilayer and the plasma membrane of HeLa cells. The latter were also stained by catalyzed transfer of a fluorescent lipid from lipid vesicles. The permeability of the cell membrane is not significantly altered under any of the catalytic conditions. These data, taken together, suggest that the polyol surfactant extracts a monomeric substrate molecule from its aggregate or microcrystal and passes it to the membrane via a loose and transient contact.  相似文献   

14.
The distribution of cholesterol between vesicles of different lipid composition at equilibrium has been determined. Small, sonicated unilamellar vesicles and large unilamellar vesicles were incubated at a defined temperature, and aliquots were then obtained at selected times for analysis. Inclusion of a small amount of phosphatidylserine or phosphatidylinositol in the membrane does not appreciably affect the distribution of cholesterol at equilibrium by these measurements. A membrane in the gel state is a poor acceptor of cholesterol. The length of the hydrocarbon chain on the phospholipid may also play a role. Bovine brain sphingomyelin dramatically slows the kinetics of cholesterol transfer, and the equilibrium distribution of cholesterol among vesicles containing sphingomyelin is therefore not observable in these experiments. Data obtained with vesicles containing phosphatidylethanolamine indicate a preference of cholesterol for vesicles composed of phosphatidylcholine compared to vesicles consisting primarily of phosphatidylethanolamine, at equilibrium. Experiments with a chaotropic agent indicate that the nature of the surface of the phosphatidylethanolamine bilayer, and its hydration, are important factors in the distribution of cholesterol among membranes in which phosphatidylethanolamine is present. These data suggest that membrane lipid content may play a role in the distribution of cholesterol among the membranes of a cell.  相似文献   

15.
The distribution of free fatty acids at equilibrium after incubation of small sonicated unilamellar vesicles (SUV) with large unilamellar vesicles (LUV) of different lipid composition has been determined. Stearic acid (SA) and oleic acid (OA) showed similar preferences for SUV and LUV of egg yolk phosphatidylcholine (EYPC). Both ionized and protonated forms of the free fatty acids (FFAs) behaved similarly with respect to the equilibrium distribution between EYPC of different size. The charge of the vesicles was found, however, to be important, since both FFAs in their ionized form preferentially associated to vesicles of phosphatidylcholine (PC) as compared with vesicles of phosphatidylglycerol (PC). While SA preferred membranes in the gel state, OA showed preference for the membrane in fluid state. The insertion of both OA and SA in phosphatidylethanolamine (PE)/phosphatidylcholine vesicles is less favourable than in vesicles of pure PC. All these data suggest that membrane lipid content may play a role in determining the distribution of free fatty acids among the membranes of a cell.  相似文献   

16.
The force of attraction between erythrocyte ghosts induced by low frequency electric fields (60 Hz) was measured as a function of the intermembrane separation. It varied from 10(-14) N for separation of the order of the cell diameter to 10(-12) N for close approach and contact in 20 mM sodium phosphate buffers (conductivity 260 mS/m, pH 8.5). For large separations the interaction force followed a dependence on separation as predicted for dipole-dipole interactions. For small separation an empirical formula was obtained. The membranes deformed at close approach (less than 1 microns) before making contact. The contact area increased with time until reaching the final equilibrium state. The ghosts separated reversibly after switching off the electric field. The membrane tension induced by the ghost interaction at contact was estimated to be of the order of 0.1 mN/m. These first quantitative measurements of the force/separation dependence for intermembrane interactions induced by low frequency electric fields indicate that attractive forces, membrane deformation and contact area of cells depend strongly on intermembrane separation and field strength. The quantitative relationship between them are important for measuring membrane surface and mechanical properties, intermembrane forces and understanding mechanisms of membrane adhesion, instability and fusion in electric fields and in general.  相似文献   

17.
A simple extension of the Gouy-Chapman theory predicts that the ability of a divalent cation to screen charges at a membrane-solution interface decreases significantly if the distance between the charges on the cation is comparable with the Debye length. We tested this prediction by investigating the effect of hexamethonium on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes. The distance between the two charges of an extended hexamethonium molecule is approximately 1 nm, which is the Debye length in the 0.1 M monovalent salt solutions used in these experiments. Six different experimental approaches were utilized. We measured the electrophoretic mobility of multilamellar vesicles to determine the zeta potential, the line width of the 31P nuclear magnetic resonance (NMR) signal from sonicated vesicles to calculate the change in potential at the phosphodiester moiety of the lipid, and the conductance of planar bilayer membranes exposed to either carriers (nonactin) or pore formers (gramicidin) to estimate the change in potential within the membrane. We also measured directly the effect of hexamethonium on the potential above a monolayer formed from negative lipids, and attempted to calculate the change in the surface potential of a bilayer membrane from capacitance measurements. With the exception of the capacitance calculations, each of the techniques gave comparable results: hexamethonium exerts a smaller effect on the potential than that predicted by the classic screening theory. The results are consistent with the predictions of the extended Gouy-Chapman theory and are relevant to the interpretation of physiological and pharmacological experiments that utilize hexamethonium and other large divalent cations.  相似文献   

18.
The mechanics of membrane-membrane adhesion are developed for the approximation that the molecular cross-bridging forces are continuously distributed as a normal stress (force per unit area). The significance of the analysis is that the finite range of the cross-bridging forces and the microscopic contact angle are not assumed negligible. Since the cross-bridging and adhesion forces are finite range interactions, there are two membrane regions: a free zone where the membranes are not subject to attractive forces; and an adherent zone where the membranes are held together by attractive stresses. The membrane is treated as an elastic continuum. The approach is to analyze the mechanics for each zone separately and then to require continuity of the solutions at the interface between the zones. Final solution yields the membrane contour and stresses proximal to and within the contact zone as well as the microscopic contact angle at the edge of the contact zone. It is demonstrated that the classical Young equation is consistent with this model. The results show that the microscopic contact angle becomes appreciable when the strength of adhesion is large or the length of the cross-bridge is large; however, the microscopic contact angle approaches zero as the membrane elastic stiffness increases. The solution predicts the width of the contact zone over which molecular bonds are stretched. It is this boundary region where increased biochemical activity is expected. In the classical model presented here, the level of tension necessary to oppose spreading of the contact is equal to the minimal level of tension required to separate the adherent membranes. This behavior is in contrast with that derived for the case of discrete molecular cross-bridges where the possibility of different levels of tension associated with adhesion and separation is introduced. The discrete cross-bridge case is the subject of a companion paper.  相似文献   

19.
It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion.  相似文献   

20.
The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA–PC liposomes–Mg2+, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) <100 nm in diameter, a “big” liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The “big” membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号