首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As tools to study structural relationships of cobra venom factor (CVF) and human complement component C3, murine monoclonal antibodies to CVF were produced. In this paper we describe two of these monoclonal anti-CVF antibodies designated GV1.8 and GV1.10, both of which bind to carbohydrate epitopes. On immunoblotting, antibody GV1.8 binds to both the alpha- and beta-chains of CVF, whereas antibody GV1.10 binds only to the alpha-chain of CVF. After enzymatic deglycosylation of CVF with N-glycanase (peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase), both antibodies lose their ability to bind to the deglycosylated protein. Additionally, the free oligosaccharide chains of CVF are able to inhibit the binding of antibodies GV1.8 and GV1.10 to CVF on enzyme-linked immunosorbent assay, further demonstrating their carbohydrate specificity. Both monoclonal antibodies to CVF cross-react with human C3. Antibody GV1.8 binds to both chains of human C3 indicating that the shared antigenic epitope present on the two glycosylated chains of CVF is also present on the two chains of human C3. Antibody GV1.10 cross-reacts only with the beta-chain of human C3 which is the homologous chain to the alpha-chain of CVF. After enzymatic deglycosylation of human C3 by N-glycanase, both antibodies lose their ability to bind to the deglycosylated protein consistent with the carbohydrate nature of the recognized epitopes. These results indicate that CVF and human C3 share carbohydrate epitopes on their homologous and nonhomologous chains.  相似文献   

2.
Comparative oligosaccharide analysis by HPLC revealed structural differences in the carbohydrate chains of human IgG4 paraproteins, varying in ability to induce the rhesus monkey's passive skin anaphylaxis. An atypical IgG4 paraprotein, which is inactive in this reaction and also does not bind the IgG4-subclass specific monoclonal antibody IH2, has a much higher proportion of the carbohydrate chains lacking terminal galactose residues than two typical IgG4 paraproteins. This structural feature may be one of the reasons for the atypical IgG4 not to bind by the mast cell Fc gamma receptor.  相似文献   

3.
Monoclonal antibody (MAb)-dextran-tin(IV) chlorin e6 (SnCe6) immunoconjugates were prepared by a new technique involving the use of reducing, terminal-modified dextran carriers and site-specific modification of the Fc oligosaccharide moiety on the antibodies. Dextran carriers were synthesized to increase the number of SnCe6 molecules attached to a MAb. The dextran carriers were coupled to the MAb via a single, chain-terminal hydrazide group to prevent aggregation of MAbs. Conjugates were prepared with antimelanoma MAb 2.1 containing up to 18.9 SnCe6 molecules per MAb. Under neutral conditions, no hydrolysis of the hydrazone bond between the MAb and the dextran carrier could be detected, and the hydrazone was not stabilized by reduction with NaCNBH3 or NaBH4. Analysis of the purified immunoconjugates showed that approximately two dextran carrier chains were attached to a MAb regardless of the number of SnCe6 molecules linked to a dextran carrier. Site-specific covalent attachment of the SnCe6-dextran chains to the MAb was confirmed by SDS-PAGE. HPLC analysis of the conjugates gave a single species eluting in the range of 200-240 kDa. As determined by a competitive inhibition radioimmunoassay using viable SK-MEL-2 human malignant melanoma cells, the conjugates showed excellent retention of antigen-binding activity relative to unconjugated MAb.  相似文献   

4.
Cobra venom factor (CVF), a nontoxic, complement-activating glycoprotein in cobra venom, is a functional analog of mammalian complement component C3b. The carbohydrate moiety of CVF consists exclusively of N-linked oligosaccharides with terminal alpha1-3-linked galactosyl residues, which are antigenic in human. CVF has potential for several medical applications, including targeted cell killing and complement depletion. Here, we report a detailed structural analysis of the oligosaccharides of CVF. The structures of the oligosaccharides were determined by lectin affinity chromatography, antibody affinity blotting, compositional and methylation analyses, and high-resolution (1)H-NMR spectroscopy. Approximately 80% of the oligosaccharides are diantennary complex-type, approximately 12% are tri- and tetra-antennary complex-type, and approximately 8% are oligomannose type structures. The majority of the complex-type oligosaccharides terminate in Galalpha1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1, a unique carbohydrate structural feature abundantly present in the glycoproteins of cobra venom.  相似文献   

5.
Conjugates of monoclonal antibodies with drugs, toxins, radionuclides, and other agents are in widespread use in therapeutic trials and as clinical research tools. The characterization of these immunoconjugates generally does not include determining the individual sites at which such agents are attached. We have begun to explore the attachment of the bifunctional chelating agent isothiocyanatobenzyl-EDTA (CITC1) to the N-termini of the light chains of the Lym-1 monoclonal antibody. The similarity between this bifunctional chelating agent and Edman's reagent, phenyl isothiocyanate, led us to develop methods to distinguish between chelate-conjugated alpha-amino groups and epsilon-amino groups by Edman degradation. Practically all the N-terminal Asp alpha-NH2 groups of Lym-1 can be modified at neutral pH, while attachment at lysine side chains predominates at pH 9. Comparison of the immunoreactivities of Lym-1-CITC conjugates with and without N-terminal conjugation shows that both are almost fully active. This implies that modification of light-chain N-termini has little or no effect on immunoreactivity, despite the fact that these residues lie near the antigen-binding sites.  相似文献   

6.
Three methods for the conjugation of oligonucleotides to antibodies and the subsequent application of these conjugates to protein detection at attomole levels in immunoassays are described. The methods are based on chemical modification of both antibody and oligonucleotide. Aldehydes were introduced onto antibodies by modification of primary amines or oxidation of carbohydrate residues. Aldehyde- or hydrazine-modified oligonucleotides were prepared either during phosphoramidite synthesis or by post-synthesis derivatization. Conjugation between the modified oligonucleotide and antibody resulted in the formation of a hydrazone bond that proved to be stable over long periods of time under physiological conditions. The binding activity of each antibody-oligonucleotide conjugate was determined to be comparable to the corresponding unmodified antibody using a standard sandwich ELISA. Each oligonucleotide contained a unique DNA sequence flanked by universal primers at both ends and was assigned to a specific antibody. Highly sensitive immunoassays were performed by immobilizing analyte for each conjugate onto a solid support with cognate capture antibodies. Binding of the antibody-oligonucleotide conjugate to the immobilized analyte allowed for amplification of the attached DNA. Products of amplification were visualized using gel electrophoresis, thus denoting the presence of bound analyte. The preferred conjugation method was used to generate a set of antibody-oligonucleotide conjugates suitable for high-sensitivity protein detection.  相似文献   

7.
Recombinant monoclonal antibody heterogeneity is inherent due to various enzymatic and non-enzymatic modifications. In this study, a recombinant humanized monoclonal IgG1 antibody with different states of glycosylation on the conserved asparagine residue in the CH(2) domain was analyzed by weak cation exchange chromatography. Two major peaks were observed and were further characterized by enzymatic digestion and mass spectrometry. It was found that this recombinant monoclonal antibody contained three glycosylation states of antibody with zero, one or two glycosylated heavy chains. The peak that eluted earlier on the cation exchange column contained antibodies with two glycosylated heavy chains containing fucosylated biantennary complex oligosaccharides with zero, one or two terminal galactose residues. The peak that eluted later from the column contained antibodies with either zero, one or two glycosylated heavy chains. The oligosaccharide on the antibodies eluted in the later peak was composed of only two GlcNAc residues. These results indicate that conformational changes in large proteins such as monoclonal antibodies, caused by different types of neutral oligosaccharides as well as the absence of oligosaccharides, can be differentiated by cation exchange column chromatography.  相似文献   

8.
The glycoprotein nature and antigenicity of a fungal D-glucosyltransferase   总被引:1,自引:0,他引:1  
D-Glucosyltransferase (EC 2.4.1.24) from Aspergillus niger has been prepared in pure form by chromatography on DEAE-cellulose. The enzyme transfers D-glucosyl units from maltose and other alpha-linked D-glucosyl oligosaccharides to glucosyl co-substrates resulting in the synthesis of new types of oligosaccharides. The glucosyltransferase has been found to be a glycoprotein containing 20% of carbohydrate consisting of mannose, glucose, and galactose. The carbohydrate residues are attached as either single units or as short oligosaccharide chains by O-glycosyl linkages to the serine and threonine residues of the protein. Antibodies directed against glucosyltransferase have been induced in animals by appropriate immunization regimes. These antibodies combine with the carbohydrate components of the enzyme and, therefore, the carbohydrate residues are the immunodeterminant groups of the glucosyltransferase.  相似文献   

9.
Neoglycoconjugates containing 4, 8, 16, 32, and 64 terminal residues of B-disaccharide (BDI) or N-acetylneuraminic acid (Neu5Ac) attached to poly(aminoamide)-type dendrimers (PAMAMs) were synthesized. The ability of BDI conjugates to bind natural xenoantibodies (anti-BDI antibodies) and the ability of Neu5Ac conjugates to inhibit the hemagglutinin-mediated adhesion of influenza virus were studied. The biological activity of PAMAM conjugates turned out to be higher than that of free carbohydrate ligands, but less than that of multivalent glycoconjugates based on other types of synthetic polymeric carriers. A conformational analysis of PAMAM matrices and resulting conjugates was performed to determine the statistical distances between carbohydrate ligands. The computations revealed the tendency of the PAMAM chains toward compaction and formation of dense globules. The process results in a decrease in the distances between the carbohydrate ligands in the conjugates and, hence, could affect the ability of glycoconjugates to efficiently bind the polyvalent carbohydrate-recognizing proteins. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 6; see also http://www.maik.ru.  相似文献   

10.
Many diagnostic and therapeutic applications of monoclonal antibodies require the covalent linking of effector or reporter molecules to the immunoglobulin polypeptides. Existing methods generally involve the non-selective modification of amino acid side chains, producing one or more randomly distributed attachment sites. This results in heterogeneous labelling of the antibody molecules and often to a decrease in antigen-binding due to the modification of residues close to the antigen-binding site. We report a novel strategy for site-specifically labelling antibodies through surface cysteine residues. Examination of molecular structures was used to identify amino acids of the CH1 domain of the IgG heavy chain that were accessible to solvent but not to larger molecules. Site-directed mutagenesis was used to substitute cysteine residues at these positions in the heavy chain of a mouse/human chimaeric version of the tumour-binding monoclonal antibody, B72.3. Expression of the modified antibody genes in mammalian cells yielded correctly assembled proteins that had thiol groups in pre-determined positions and showed no loss of antigen-binding activity. One of the mutants was used to demonstrate the site-specific attachment of a radio-iodinated ligand to the chimaeric B72.3 antibody.  相似文献   

11.
Neoglycoconjugates containing 4, 8, 32, and 64 terminal residues of B-disaccharide (BDI) or N-acetylneuraminic acid (Neu5Ac) attached to poly(aminoamide)-type dendrimers (PAMAMs) were synthesized. The ability of BDI conjugates to bind natural xenoantibodies (anti-BDI antibodies) and the ability of Neu5Ac conjugates to inhibit the hemagglutinin-mediated adhesion of influenza virus were studied. The biological activity of PAMAM conjugates turned out to be higher than that of free carbohydrate ligands, but less than that of multivalent glycoconjugates based on other types of synthetic polymeric carriers. A conformational analysis of PAMAM matrices and resulting conjugates was performed to determine the statistical distances between carbohydrate ligands. The computations revealed the tendency of the PAMAM chains toward compaction and formation of dense globules. The process results in a decrease in the distances between the carbohydrate ligands in the conjugates and, hence, could affect the ability of glycoconjugates to efficiently bind the polyvalent carbohydrate-recognizing proteins.  相似文献   

12.
A panel of four murine monoclonal antibodies apparently directed against three distinct epitopes of carcinoembryonic antigen (CEA) was conjugated via oxidized carbohydrate groups to 4-desacetylvinblastine-3-carboxyhydrazide. The resulting antibody-vinca conjugates were evaluated for antitumor activity against 2-9-day-established LS174T human colorectal carcinoma xenografts. The antibodies (immunoglobulin G, IgG) employed in this study were 11.285.14 (IgG1), 14.95.55 (IgG2a), CEM231 (IgG1), ZCE025 (IgG1). Additive immunofluorescence studies indicated that CEM231 and ZCE025 recognized the same or a closely related epitope(s) on CEA which was distinct from the two epitopes bound by 11.285.14 and 14.95.55. The in vivo antitumor efficacy studies demonstrated that chemoimmunoconjugates prepared from 14.95.55 and ZCE025 were more active than the conjugates constructed from the 11.285.14 and CEM231 antibodies. The 14.95.55 and ZCE025 immunoconjugates were also more efficacious than free drug or drug conjugated to irrelevant murine IgG. The presence of increased carbohydrate content on the light chain of ZCE025 may have been responsible for the ability to construct ZCE025-vinca conjugates with about twice the drug content (approximately 10 mol of vinca/mol of IgG) than was achieved with the other antibodies. The highly conjugated form of ZCE025 demonstrated similar efficacy but was much less toxic than a ZCE025 conjugate containing 5 mol of vinca/mol of IgG. These data indicated that significant differences existed in the ability of monoclonal antibodies to target a cytotoxic agent for effective antitumor activity even when the immunoconjugates recognized the same antigen or even the same or closely related antigen epitope(s). Furthermore, these differences could not have been identified without extensive in vivo evaluation for antitumor efficacy.  相似文献   

13.
HER2-ECD (human epidermal growth factor receptor 2 – extracellular domain) is a prominent therapeutic target validated for treating HER2-positive breast and gastric cancer, but HER2-specific therapeutic options for treating advanced gastric cancer remain limited. We have developed antibody-drug conjugates (ADCs), comprising IgG1 linked via valine-citrulline to monomethyl auristatin E, with potential to treat HER2-positive gastric cancer in humans. The antibodies optimally selected from the ADC discovery platform, which was developed to discover antibody candidates suitable for immunoconjugates from synthetic antibody libraries designed using antibody-antigen interaction principles, were demonstrated to be superior immunoconjugate targeting modules in terms of efficacy and off-target toxicity. In comparison with the two control humanized antibodies (trastuzumab and H32) derived from murine antibody repertoires, the antibodies derived from the synthetic antibody libraries had enhanced receptor-mediated internalization rate, which could result in ADCs with optimal efficacies. Along with the ADCs, two other forms of immunoconjugates (scFv-PE38KDEL and IgG1-AL1-PE38KDEL) were used to test the antibodies for delivering cytotoxic payloads to xenograft tumor models in vivo and to cultured cells in vitro. The in vivo experiments with the three forms of immunoconjugates revealed minimal off-target toxicities of the selected antibodies from the synthetic antibody libraries; the off-target toxicities of the control antibodies could have resulted from the antibodies’ propensity to target the liver in the animal models. Our ADC discovery platform and the knowledge gained from our in vivo tests on xenograft models with the three forms of immunoconjugates could be useful to anyone developing optimal ADC cancer therapeutics.  相似文献   

14.
Background: Monoclonal antibodies (MAbs) can target therapy to tumours while minimising normal tissue exposure. Efficacy of immunoconjugates containing peptide 101, designed around the first 22 amino acids of bee venom, melittin, to maintain the amphipathic helix, to enhance water solubility, and to increase hemolytic activity, was assessed in nude mice bearing subcutaneous human prostate cancer xenografts. Methods: Mouse MAbs, J591 and BLCA-38, which recognise human prostate cancer cells, were cross-linked to peptide 101 using SPDP. Tumour-bearing mice were used to compare biodistributions of radiolabeled immunoconjugates and MAb, or received multiple sequential injections of immunoconjugates. Therapeutic efficacy was assessed by delay in tumour growth and increased mouse survival. Results: Radiolabeled immunoconjugates and antibodies showed similar xenograft tropism. Systemic or intratumoural injection of immunoconjugates inhibited tumour growth in mice relative to carrier alone, unconjugated antibody and nonspecific antibody-peptide conjugates and improved survival for treated mice. Conclusions: Immunoconjugates deliver beneficial effects; further peptide modifications may increase cytotoxicity.  相似文献   

15.
Antibody-drug conjugates enhance the antitumor effects of antibodies and reduce adverse systemic effects of potent cytotoxic drugs. However, conventional drug conjugation strategies yield heterogenous conjugates with relatively narrow therapeutic index (maximum tolerated dose/curative dose). Using leads from our previously described phage display-based method to predict suitable conjugation sites, we engineered cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not perturb immunoglobulin folding and assembly, or alter antigen binding. When conjugated to monomethyl auristatin E, an antibody against the ovarian cancer antigen MUC16 is as efficacious as a conventional conjugate in mouse xenograft models. Moreover, it is tolerated at higher doses in rats and cynomolgus monkeys than the same conjugate prepared by conventional approaches. The favorable in vivo properties of the near-homogenous composition of this conjugate suggest that our strategy offers a general approach to retaining the antitumor efficacy of antibody-drug conjugates, while minimizing their systemic toxicity.  相似文献   

16.
As a consequence of detecting an IgM M-protein (naturally occurring diseased-state monoclonal antibody) immunoreactive to insect acidic glycolipids in a patient with demyelinating peripheral neuropathy, normal human sera were examined for the occurrence of heterophile antibodies directed against carbohydrate epitopes present on glycosphingolipids of Calliphora vicina (Insecta: Diptera). The insect glycolipids can be separated into neutral, zwitterionic, and acidic types, according to whether the oligosaccharide chains consist of neutral monosaccharides only, or carry an additional phospho-ethanolamine side chain and/or a beta-glucuronic acid residue, respectively. Natural antibody activity to these three classes of insect glycosphingolipids was detected in all normal human sera examined. The antibody activities were separated by sequential chromatography on affinity columns of octyl-Sepharose 4B-bound neutral and zwitterionic glycolipids into three populations with differing epitope-type specificities. As expected for heterophile antibodies, they are mainly of the IgM class. Population I recognized epitopes present on the three types of insect glycolipids, i.e., the neutral oligosaccharide chain backbone, the main determinant of which contains a terminal N-acetylhexosamine. Immunoreactivity is separable into at least four subpopulations of differing carbohydrate epitope specificity. Population II recognized epitopes containing phosphoethanolamine in zwitterionic and some acidic insect glycolipids. There are two subpopulations, the majority of which require the free amino group of phosphoethanolamine for immunoreactivity. Population III antibodies showed immunoreactivity to terminal beta-glucuronic acid-containing epitopes present only on acidic insect glycolipids.  相似文献   

17.
There has been a recent resurgence of interest in the post-translational modification of serine and threonine hydroxyl groups by glycosylation, because the resulting O-linked oligosaccharide chains tend to be clustered over short stretches of peptide and hence they can present multivalent carbohydrate antigenic or functional determinants for antibody recognition, mammalian cell adhesion and microorganism binding. Co-operativity can greatly increase the affinity of interactions with antibodies or carbohydrate binding proteins. Thus, in addition to their known importance in bearing tumour associated antigens in the gastrointestinal and respiratory tracts, glycoproteins with O-linked chains have been implicated as ligands or co-receptors for selectins (mammalian carbohydrate binding proteins). Microorganisms may have adopted similar mechanisms for interactions with mammalian cells in infection, by having relatively low affinity ligands (adhesins) for carbohydrate binding, which may bind with higher affinity due to the multivalency of the host ligand and which are complemented by other virulence factors such as interactions with integrin-type molecules. In addition to specific adhesion signals from O-linked carbohydrate chains, multivalent O-glycosylation is involved in determining protein conformation and forming conjugate oligosaccharide-protein antigenic, and possible functional determinants.  相似文献   

18.
Murine monoclonal antibodies, TE-1 and TE-3, generated by immunization with a biosynthetic reaction product containing a terminal Gal beta 1----3GlcNAc structure have been produced and found to react specifically with underivatized type 1 chain lacto-series carbohydrate structures. Detailed analysis of these antibodies, both IgM, indicates two differing classes of epitope specificity. Antibody TE-1 was found to bind preferentially to longer chain carbohydrate structures containing a terminal Gal beta 1----3GlcNAc disaccharide, indicating that optimal antibody binding involved more than recognition of this disaccharide. In contrast, antibody TE-3 was found to bind strongly carbohydrate structures containing terminal Gal beta 1----3GlcNAc structures irrespective of chain length. Modification of core chain structures by addition of fucose and/or sialic acid residues completely abolished antibody binding with either antibody. TLC immunostaining of neutral glycolipids isolated from a variety of human colonic adenocarcinoma cell lines indicated intensely stained bands, particularly with antibody TE-3, which correlated with the level of expression of type 1 chain based glycolipid derivatives. These antibodies are applied to the detailed study of the regulation of synthesis of lacto-series type 1 chain based carbohydrate structures.  相似文献   

19.
A novel, highly water-soluble, heterobifunctional cross-linking reagent, S-(2-thiopyridyl)-L-cysteine hydrazide (TPCH), was synthesized which contains a hydrazide moiety for coupling to aldehyde groups generated in the carbohydrate residues of antibodies by mild periodate oxidation, and a pyridyl disulfide moiety for coupling to molecules with a free sulfhydryl group. Since the carbohydrate moieties are distal to the antigen binding region of antibodies, derivatization with this cross-linker minimizes impairment of the antigen binding function. Derivatization of the human monoclonal IgM antibody 16-88 against human colon carcinoma cells with as many as 16 TPCH cross-linker molecules did not impair its antigen binding capability. Using mild oxidation conditions for antibody derivatization, sialic acid residues were identified as attachment sites for the cross-linker molecules, since after desialylation of antibody 16-88 by neuraminidase virtually no cross-linker molecules could be incorporated. Comparison of TPCH with S-(2-thiopyridyl)mercaptopropionic acid hydrazide and S-(2-thiopyridyl)-L-cysteine, two related cross-linking reagents, revealed that TPCH is most efficiently incorporated into periodate-treated antibody. Based on the structural differences of the cross-linkers, the more efficient incorporation of TPCH appears to be a function of the presence of a hydrazide moiety with an adjacent amino group. When three to four molecules of pyridyl disulfide-derivatized barley toxin were coupled to TPCH-derivatized antibody 16-88, the antigen binding capability remained uncompromised. In addition, no significant impairment of toxin activity upon coupling to the antibody was observed. Based on these data, TPCH may be very useful for the synthesis of immuno-conjugates with no or only minimal impairment of the antigen binding function.  相似文献   

20.
Antibodies may be viewed as adaptor molecules that provide a link between humoral and cellular defence mechanisms. Thus, when antigen-specific IgG antibodies form antigen/antibody immune complexes the effectively aggregated IgG can activate a wide range of effector systems. Multiple effector mechanisms result from cellular activation mediated through a family of IgG-Fc receptors differentially expressed on leucocytes. It is established that glycosylation of IgG-Fc is essential for recognition and activation of these ligands. IgG antibodies predominate in human serum and most therapeutic antibodies are of the IgG class.The IgG-Fc is a homodimer of N-linked glycopeptide chains comprised of two immunoglobulin domains (Cgamma2, Cgamma3) that dimerise via inter-heavy chain disulphide bridges at the N-terminal region and non-covalent interactions between the C-terminal Cgamma3 domains. The overall shape of the IgG-Fc is similar to that of a "horseshoe" with a majority of the internal space filled by the oligosaccharide chains, only attached through asparagine residues 297.To investigate the influence of individual sugar (monosaccharide) residues of the oligosaccharide on the structure and function of IgG-Fc we have compared the structure of "wild-type" glycosylated IgG1-Fc with that of four glycoforms bearing consecutively truncated oligosaccharides. Removal of terminal N-acetylglucosamine as well as mannose sugar residues resulted in the largest conformational changes in both the oligosaccharide and in the polypeptide loop containing the N-glycosylation site. The observed conformational changes in the Cgamma2 domain affect the interface between IgG-Fc fragments and FcgammaRs. Furthermore, we observed that the removal of sugar residues permits the mutual approach of Cgamma2 domains resulting in the generation of a "closed" conformation; in contrast to the "open" conformation which was observed for the fully galactosylated IgG-Fc, which may be optimal for FcgammaR binding. These data provide a structural rationale for the previously observed modulation of effector activities reported for this series of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号