首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell Population Studies in Developing Root Primordia   总被引:5,自引:0,他引:5  
The proliferation of polyploid and diploid cells was followedduring the development of lateral root primordia of Vicia faba.Presumptive primordial cells were treated with weak solutionsof colchicine, 0.003, 0.006, and 0.0125 per cent, for 3 h. Somecells are induced to become polyploid and they form a markedsub-population. The relative frequencies of diploid and polyploidcells were determined from the time small primordia were presenttill lateral roots were fully emerged. These frequencies havebeen found to change in a regular fashion and the changes reflectdifferent levels of mitotic activity in different parts of aprimordia as it develops. Polyploid cells occupy the centralcore of the primordia and they divide actively except for theperiod just before lateral root emergence. Coincident with thistemporary quiescence of the core cells, the peripheral cells,which remain diploid after treatment with the weaker solutionsof colchicine, continue to divide. These changes in mitoticactivity of the central and peripheral cells are shown bothin the changes in the relative frequencies of polyploid anddiploid mitoses as a primordium grows and in changes in mitoticindex. A microspectrophotometric study indicates that the centralcells are held, temporarily in the G1 phase of the cell cycle.  相似文献   

2.
R. D. MacLeod 《Planta》1966,71(3):257-267
Summary Roots of Vicia faba were treated with colchicine (0.025%), or IAA (4.7×10-6 M), or both, for 3 hours and fixed at various intervals over the following 11 days. The axis of spindle orientation and the distribution of mitotic figures, lateral root primordia and xylem vessel elements was examined in the apical 10 mm of median longitudinal sections of these roots.No effect of IAA was found on the orientation of the spindle. However, evidence was obtained indicating that the systems controlling the polarity of cell division and cell expansion differ in some way.The number of lateral root primordia formed was greater in roots treated with IAA or colchicine than in control roots. These primordia were always initiated adjacent to a xylem vessel. Thus, no primordium was closer to the apex than the most apical xylem vessel, suggesting that an endogenous factor involved in primordia initiation is transported in the xylem. The primordia which develop after colchicine treatment grow out as lateral roots; this is in contrast with those which form after IAA treatment and which do not undergo elongation. These results, which it must be emphasized apply only to the apical 1 cm of treated roots, indicate that lateral root primordia become sensitive to IAA at a certain stage in their development. Exogenous IAA acts as an inhibitor.The new meristem, which forms in the primary root apex after colchicine treatment, contains both diploid and polyploid cells, i.e. it was formed from cells that were unaffected and from cells that were affected by colchicine. Following colchicine treatment the size of the meristem shrinks and this can be prevented by treatment with IAA. This and other evidence presented here, suggests that IAA is a factor involved in the control of the size of the apical meristem in normal roots.  相似文献   

3.
A Differential Response to Colchicine of Meristems of Roots of Vicia faba   总被引:2,自引:0,他引:2  
DAVIDSON  D. 《Annals of botany》1965,29(2):253-264
In whole root systems of Vicia faba, including primaries andlaterals, the meristems do not respond in a uniform manner totreatment with colchicine. The meristems of the primary andfully emerged lateral roots become mixoploid and these rootsshow a temporary inhibition of growth. Lateral roots that emergewithin 48 hours of treatment show no effects of colchicine;their growth is not inhibited and they contain few or no polyploidcells. The cells of the primordia that produce these lateralsappear to be insensitive to colchicine: at the insensitive stagethese primordia contain at least 1, 000 cells. Primordia withless than 800 cells are very sensitive to colchicine. They donot recover from treatment and appear to be completely inhibited.The stages of extreme sensitivity and resistance are transientphases in the morphogenesis of a lateral root. The change insensitivity to colchicine is accompanied by a fall in the mitoticindex; this is highest in young primordia, where it is abouttwice the value found in growing laterals.  相似文献   

4.
BARKER  W. G. 《Annals of botany》1981,47(5):661-668
Seedlings of garden balsam, Impatiens balsamina, form an encirclingswollen ring, the collet, basal to the hypocotyl. From this,four lateral roots emerge promptly after germination. When thisstructure is excised, it regenerates as a basal encircling swellingfrom which four lateral roots with root hairs emerge. Repetitionof the removal of this structure results again in the regenerationof a similar complex. Eventually, after 3–4 excisions,the pattern is broken and lateral roots occur sporadically alongthe hypocotyl. Mutilations of seedlings of the garden balsamindicate that the regeneration will not occur in the absenceof cotyledonary tissue. This suggests a control site for thisregenerative phenomenon but no mechanism for this control isadvanced. Impatiens balsamina, balsam, lateral roots, regeneration, collet  相似文献   

5.
MACLEOD  R. D. 《Annals of botany》1976,40(3):551-562
Lateral root primordia in i are first initiated 2–3 daysfollowing the onset of germination, after which they take 5.17–6.35days to complete their development and emerge as lateral roots.Variation in the amount of time elapsing between primordiuminitiation and emergence as a lateral is probably a reflectionof the cell number attained by any one primordium at the timeof emergence. The number of primordia produced per cm of primaryroot growth (5.35–6.65) was not affected by variationin the rate of root elongation, although the number of primordiaproduced each day increased with increase in the rate of rootgrowth. In colchicine-treated roots, the amount of time between primordiuminitiation in the C-tumour and the subsequent emergence of alateral (5.43–6.43 days) was similar to the value obtainedin control roots. Primordia which were present at the time ofcolchicine treatment responded to treatment in a number of differentways, depending on the stage of development reached. Primordiain the first 2.66 days of their development die following treatment;those between 2.66 and 3.69 days old have their developmentinhibited but stay alive; primordia which have been developingfor 3.69–4.91 days following initiation grow out as straightlaterals, while those between 4.91 and 5.77 days old form C-tumoursand emerge as inhibited laterals.  相似文献   

6.
The initiation of lateral root primordia and their subsequentemergence as secondary roots have been examined in attachedand excised roots of Zea mays grown in the presence or absenceof indol-3-yl acetic acid (IAA). Exposure to IAA enhanced anlageinception in both batches of roots. In the attached roots, theIAA-induced stimulation of primordium initiation was followedby a similar increase in lateral emergence. IAA treatment, however,had no effect on the number of laterals produced, per centimetreof root, in the excised primaries. Thus, exposure to IAA didnot directly enhance lateral emergence in the attached rootsnor did it stimulate such emergence in the excised ones. Nocorrelation was found between proliferative activity in themeristem at the apex of the primary or the rate of root elongationon the one hand, and either the number of primordia initiated,or the number of laterals produced, per centimetre of primary,on the other. Zea mays, maize, root, primordium, lateral, indol-3-yl acetic acid, meristematic activity  相似文献   

7.
Mitogen-activated protein kinase (MAPK) cascades consist ofmembers of three families of protein kinases: the MAPK family,the MAPK kinase family, and the MAPK kinase kinase (MAPKKK)family. Some of these cascades have been shown to play centralroles in the transmission of signals that control various cellularprocesses including cell proliferation. Protein kinase NPK1is a structural and functional tobacco homologue of MAPKKK,but its physiological function is yet unknown. In the presentstudy, we have investigated sites of expression of the NPK1gene in a tobacco plant and developmental and physiologicalcontrols of this expression. After germination, expression ofNPK1 was first detected in tips of a radicle and cotyledons,then in shoot and root apical meristems, surrounding tissuesof the apical meristems, primordia of lateral roots, and youngdeveloping organs. No expression was, however, observed in matureorgans. Incubation of discs from mature leaves of tobacco withboth auxin and cytokinin induced NPK1 expression before thedivision of cells. It was also induced at early stages of thedevelopment of primordia of lateral roots and adventitious roots.Thus, NPK1 expression appears to be tightly correlated withcell division or division competence. Even when an inhibitorof DNA synthesis was added during the germination or the inductionof lateral roots by auxin, NPK1 expression was detected. Theseresults showed that the NPK1 expression precedes DNA replication.We propose that NPK1 participates in a process involving thedivision of plant cells. (Received January 26, 1998; Accepted April 9, 1998)  相似文献   

8.
Root explants of Brassica napus cultured in vitro form adventitiousshoots. The root buds originated at the base of the newly initiatedlateral root. Cells in association with the differentiatingphloem of the developing lateral roots were the sites for rootbud formation. A nodular mass of cytoplasmic cells developedby day 7 at the base of the lateral root. This group of cellscontinued to divide an enlarge. The cells in the peripheralregion of the nodular cell mass differentiated further intoa meristematic zone. The meristematic cells grew towards theperiphery of the cortex by crushing the outer layer of corticalcells. Further development of the meristematic layer resultedin the formation of shoot primordia with organized shoot apicalmeristems and leaf primordia.Copyright 1993, 1999 Academic Press Brassica napus, canola, cultured root segments, root buds  相似文献   

9.
Chimeras and the Origin of Lateral Root Primordia in Zea mays   总被引:6,自引:0,他引:6  
CLOWES  F. A. L. 《Annals of botany》1978,42(4):801-807
The difficulty of determining the contribution made by the pericycleand endodermis of mother roots to lateral primordia in the Gramineaehas been solved by inducing polyploid chimeras at initiation. The endodermis forms a layer covering the primordium, but thislayer does not form the epidermis of the lateral. It does formthe root cap of the young primordium, but this is replaced ata variable stage of development by the quiescent centre donatinga new set of cap initials of pericyclic origin. Reasons forthe previous diversity of interpretations are presented. chimera, lateral root primordia, Zea mays  相似文献   

10.
The pattern of lateral root initiation in seminal roots of wheat(Triticum aestivumL. cv. Alexandria) and the location, scaleand time-course for adjustments in initiation were studied afterchanges in C and N supply. Macroscopically visible primordiaappeared in a non-acropetal sequence with the frequency (numberper unit length) increasing with distance behind the main rootapex to a maximum at 40–50 mm behind the root tip. Pruningthe root system to a single seminal axis increased the primordiafrequency by 23% within 15 h. After longer periods, the effectof root-pruning was greater. The enhanced primordia frequencywas first observed in tissue located 0–10 mm behind theapex at the start of treatment. Feeding glucose (50 mM) alsoincreased primordia frequency within 15 h, but to a greaterextent, and here additional primordia were initiated in tissuelocated 0–10and10–20 mm behind the apex at the startof treatment. Withdrawing NO3-from one part of a split-rootsystem, whilst maintaining the supply to the other, reducedprimordia frequency in the non-fed roots and, in some cases,a compensatory increase in the NO3--fed roots was observed.The location and scale of the adjustments were similar to thosefound with root-pruning and glucose-feeding, but were slightlyslower to appear. In spite of some differences in detail, therewas a broad similarity in site, scale and time-course for adjustmentsin lateral root initiation with these treatments, which is consistentwith the operation of a common mechanism. Whenever an increasein primordia frequency was observed, it was associated withan increase in the ethanol-soluble sugar content of the tissue.However, the reduction in frequency in NO3--deprived roots wasalso accompanied by an increase in sugar content. There wasno consistent relationship between total N content of the tissueand primordia frequency, but there was between primordia frequencyand the rate of net NO3-uptake. The possible mechanisms controllinglateral root initiation are discussed. Compensatory growth; correlative growth; glucose; initiation; lateral root; nitrate; primordium; split-root; Triticum aestivum; wheat  相似文献   

11.
Lateral root development in cultured seedlings of Pisum sativum (cv. Alaska) was modified by the application of auxin transport inhibitors or antagonists. When applied either to replace the root tip or beneath the cotyledonary node, two auxin transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA) and 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5,1-α]isoindol-8-one (DPX-1840), increased cell division activity opposite the protoxylem poles. This resulted in the formation of masses of cells, which we are calling root primordial masses (RPMs), 2 to 3 days after treatment. RPMs differed from lateral root primordia in that they lacked apical organization. Some roots however developed both RPMs and lateral roots indicating that both structures were similar in terms of the timing and location of cell division in the pericycle and endodermis leading to their initiation. Removal of the auxin transport inhibitors allowed many of the RPMs to organize later into lateral root primordia and to emerge in clusters. When the auxin, indoleacetic acid (IAA) was added to the growth medium along with DPX-1840, 3 ranks of RPMs now in the form of fasciated lateral roots emerged from the primary root. The auxin antagonist, p-chlorophenoxy-isobutyric acid (PCIB), also induced RPM formation. In contrast to DPX-1840 treatment, the addition of IAA during PCIB treatment caused normal lateral root development.  相似文献   

12.
The effect of the formation of a cavity in the cortex of theprimary root of Vicia faba adjacent to lateral root primordiaon root development has been investigated. Premature exposureof such primordia to the external medium by removing the overlyingtissues of the primary root has no effect on primordium developmentif that primordium was within 48 h of emerging as a lateralroot. Similar exposure of primordia which were at an earlierstage of development and consisted of between 3400 and 7000cells resulted in the generation of a stationary phase, withmost of the nuclei arrested in G1 (presynthetic interphase),48–72 h after exposure began, followed by nuclear degenerationby 96 h. Since no mature vascular tissue was found in theseprimordia until after they emerged as secondary roots, all ofthe nutrients necessary for the maintenance of cell proliferationin these meristems must reach them by simple diffusion fromthe surrounding medium. A preliminary analysis of the liquidcontents of the cavity next to developing primordia demonstratesit to be rich in carbohydrates and it is clear, from the resultsreported in this paper, that cell proliferation in primordia,consisting of a mean number of 5400 cells, is largely dependenton the substances present in the cavity fluid, although somematerials reach the primordium by diffusion from the cells ofthe primary root to which the primordium remains attached.  相似文献   

13.
The effects of diclofop-methyl on root growth of wild oat   总被引:1,自引:0,他引:1  
Diclofop-methyl severely reduced the growth of seminal roots of wild oat ( Avena fatua L.) when applied in hydroponics at 0.01 and 0.05 μ M . Lateral roots emerged closer to the seminal root apex than in the controls, but coronal root number and length were unaffected at 0.01 μ M . However, doses of 0.05 to 0.1 μ M induced more but shorter coronal roots to emerge than for controls. At 1 μ M the number and length of coronal roots were less than for controls. Root-applied diclofop-methyl at 1 μ M inhibited emerging second leaf growth to the same extent as a foliar dip in 1 μ M diclofop-methyl without causing chlorosis as foliar treatment does. Because of limited basipetal transport of foliarly-applied diclofop-methyl, shoot treatment was ineffective in inducing abnormal root morphogenesis of the seminal and lateral root systems, although it caused abnormalities of the coronal root system. Time course studies were initiated to examine the effect of root-applied diclofop-methyl at 0.05 μ M . Seminal root growth was inhibited (by diclofop-methyl) soon after treatment, while controls continued elongating. The distance between the seminal root apex and the first lateral primordia increased in the controls within one day after treatment, but decreased in the herbicide-treated roots. The distance between the seminal root apex and the first emerged lateral root was reduced by three days after treatment. The number of lateral primordia and emerged roots was unaffected three days after treatment. These dose-response and kinetic results suggested that diclofop-methyl caused a loss of apical dominance in the seminal root.  相似文献   

14.
Distribution of Lateral Root Primordia in Root Tips of Musa acuminata Colla   总被引:3,自引:0,他引:3  
CHARLTON  W. A. 《Annals of botany》1982,49(4):509-520
The distribution of lateral root primordia in Musa acuminatashows discrete elements of pattern, a major element of whichis the rather regular spacing of laterals along protoxylem-basedranks. There is some co-ordination of positions of lateralsin different ranks. Laterals are apparently not initiated ina single acropetal sequence within the root tip as a whole althoughthey are initiated in acropetal sequence within each rank. Musa acuminata, banana, roots, lateral roots  相似文献   

15.
The development of lateral root primordia has been investigatedin excised roots of Vicia faba, Pisum sativum, Zea mays andPhaseolus vulgaris cultured in White's medium supplemented with2 per cent sucrose and compared with previously published dataon such development in primaries of the corresponding intactplants (control roots). Primordia were produced in each batchof excised roots over the 6 day culture period but at a lowerrate (number day–1) than in the controls. Such primordia in cultured roots of Zea and Phaseolus completedtheir development and grew out as lateral roots over a periodsimilar in length to that found in the controls, but with acell number of only about 33 per cent of that attained at thetime of secondary emergence in the primaries of the latter roots.These lower cell numbers were at least partly a reflection ofincreases in mean cell doubling time over the period of anlagedevelopment investigated in the excised roots relative to thecorresponding values found in the controls. Primordia initiated in excised roots of Pisum and Vicia didnot complete their development in culture, i.e. no lateral rootsemerged and arrest took place with cell numbers of only 37 (Pisum)and 17 (Vicia) per cent of the numbers determined at the timeof secondary root emergence in the controls. Such arrested primordiahad few nuclei in S and none in mitosis. Moreover, at leastin Pisum, the frequency distribution of the relative DNA contentof the nuclei in the latter primordia approximated that foundin the apical meristem of primary roots following the establishmentof the stationary phase under conditions of carbohydrate starvation. It has also been demonstrated in the course of these investigationsthat lateral root primordium development in all four speciesis at least biphasic and possibly triphasic. Vicia faba L., broad bean, Pisum sativum L., garden pea, Zea mays L., maize, Phaseolus vulgaris L., dwarf bean, root primordia, anlage, cell doubling time, lateral root emergence  相似文献   

16.
In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root primordia (LRPs). This was demonstrated by direct observation and mapping of mitotic figures, cell-length measurements, and the histochemical analysis of a cyclin-GUS fusion protein in pericycle cells. The estimated duration of a pericycle cell cycle in the root apical meristem was similar to the interval between cell displacement from the meristem and the initiation of LRP formation. Developmentally controlled LRP initiation occurs early, 3 to 8 mm from the root tip. Thus the first growth control point in lateral root formation is defined by the initiation of primordia in stochastic patterns by cells passing through the elongation and young differentiation zones, up to where lateral roots begin to emerge from the primary root. Therefore, the first growth control point is not restricted to a narrow developmental window. We propose that late LRP initiation is developmentally unrelated to the root apical meristem and is operated by a second growth control point that can be activated by environmental cues. The observation that pericycle cells divide and lateral root primordia form without intervening mitotic quiescence suggests that lateral organ formation in roots and shoots might not be as fundamentally different as previously thought.  相似文献   

17.
Detached leaflets of Zamioculcas form a tuberous swelling, fromwhich roots and one or more buds emerge, at the base of theleaflet stalk (petiolule). Similar regeneration occurs at theproximal end of any cut across the midrib and, in the absenceof the midrib, at the base of the main lateral veins; it isalways associated with vascular tissue. Whole leaves and barepetioles also formed one or more such tubers, but no regenerationoccurred from roots or portions of tuber. Regeneration can beinduced at the distal cut surface of portions of leaflet, whereit does not normally occurs, by treatment with various growth-regulatingsubstances. Questions of correlation, polarity, and causalityare discussed as far as is possible without the anatomical observations,which form the subject of a separate paper.  相似文献   

18.
In decapitated adventitious roots of Allium cepa L. var. French,the time taken for lateral primordia to appear in five sectorshas been studied. This time is approx. 4–5 d after theapex of the adventitious root gave rise to the primordial initialcells. Allium cepa, adventitious root, lateral primordia  相似文献   

19.
Endodermis and pericycle cell lengths were measured in intactand decapitated adventitious roots of Allium cepa L. Decapitationhad no effect on cell length in mature portions of the root,although it affected more immature cells, impeding normal elongation.Cell length shows a characteristic pattern in different zonesof the adventitious root: cells in the medial region were moremarkedly elongated. The number of lateral root primordia wasalso determined in different zones of the adventitious root.The possible relationship between lateral root distributionpattern and cell length in the endodermis and pericycle is discussed. Allium cepa, onion, endodermis, pericycle, lateral root, cell length  相似文献   

20.
Abstract

Our study was carried out in bench rhizotrons using the Camarosa variety of strawberry (Fragaria × ananassa Duch.), by exciding the apex of fast-growing primary roots at two distances (1 or 8 cm) from the apex. It was demonstrated that new lateral meristems were rapidly induced by excision of the root apex at either distance; after 24 h, histone H4 in situ hybridisation detected groups of cell-organising root primordia just a few millimetres below the cut. After a further 24 h, new lateral roots were about to protrude from the original root. Results show that lateral roots can be formed anywhere along the primary roots of strawberry plants from a few stem cells distributed along the pericycle close to the protoxylem arches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号