首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Accumulating data suggest that local production of 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) could provide an important cell growth regulatory mechanism in an autocrine fashion in prostate cells. Previously, we demonstrated a differential expression of 1alpha-OHase enzymatic activity among noncancerous (PZHPV-7) and cancer cells (PC-3, DU145, LNCaP), which appears to correlate with 1alpha-OHase m-RNA synthesis and its promoter activities. Since it is well-established that EGF regulates the proliferation of prostate cells via autocrine and paracrine loops and 1alpha,25(OH)(2)D inhibites prostate cell proliferation, we investigated if EGF also regulated 1alpha-OHase expression in prostate cells. We found that EGF upregulated 1alpha-OHase promoter activity and enzyme activity in PZ-HPV-7 and that 1alpha,25(OH)(2)D(3) inhibited EGF-dependent up-regulation of 1alpha-OHase enzymatic activity. Moreover, the EGF-stimulated promoter activity was inhibited 70% by the MAPKK inhibitor, PD98059, suggesting that the MAPK pathway may be one pathway involved in the regulation of prostatic 1alpha-OHase by EGF to increase1alpha,25(OH)(2)D synthesis as a feedback regulator of cell growth. Because EGF has no effect on 1alpha-OHase promoter activity in LNCaP cells, we propose that the ability of EGF to stimulate 1alpha,25(OH)(2)D synthesis may be abolished or diminished in cancer cells.  相似文献   

2.
The hormone 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) inhibits growth and induces differentiation of prostate cells. The enzyme responsible for 1alpha,25(OH)(2)D synthesis, 25-hydroxyvitamin D (25(OH)D)-1alpha-hydroxylase (1alpha-OHase), has been demonstrated in human prostate cells. We compared the levels of 1alpha-OHase activity in prostate cancer cell lines, LNCaP, DU145 and PC-3 and in primary cultures of normal, cancerous and benign prostatic hyperplasia (BPH) prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, including an undetectable level of activity in LNCaP cells. Transient or stable transfection of 1alpha-OHase cDNA into LNCaP cells increased 1alpha-OHase activity from undetectable to 4.95pmole/mg+/-0.69pmole/mg and 5.8pmole/mg+/-0.7pmole/mg protein per hour, respectively. In response to 25(OH)D, the prohormone of 1alpha,25(OH)(2)D, the transfected LNCaP cells showed a significant inhibition of 3H-thymidine incorporation (37%+/-6% and 56%+/-4% at 10(-8)M for transiently and stably transfected cells, respectively). These findings support an important autocrine role for 1alpha,25(OH)(2)D in the prostate and suggest that the re-introduction of the 1alpha-OHase gene to prostate cancer cells, in conjunction with the systemic administration of 25(OH)D, constitutes an endocrine form of gene therapy that may be less toxic than the systemic administration of 1alpha,25(OH)(2)D.  相似文献   

3.
4.
5.
6.
7.
8.
9.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

10.
11.
12.
RT-PCR analysis showed elevated expression of 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-OHase) and of 25-hydroxyvitamin D-24-hydroxylase (24-OHase) in well differentiated human colon carcinomas in comparison to normal mucosa. Further tumor progression is associated with a rise in 1alpha-OHase but with no significant change in 24-OHase mRNA expression. Accordingly, HPLC analysis of 25-hydroxy-vitamin D3 metabolism in freshly isolated tumor cells indicated that well to moderately differentiated colon cancers in situ are able to produce 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3) and convert it through 24-OHase activity into side-chain modified metabolites, 1,24,25-(OH)3-D3 and 1,25-(OH)2- 24-oxo-D3. Likewise, 25-(OH)-D3 is metabolized into 24,25-(OH)2D3, 23,25-(OH)2D3, and 23,25-(OH)2-24-oxo-D3. Poorly-differentiated cancers expressed low levels of 1alpha-OHase mRNA, whereas 24-OHase was even over-expressed. RT-PCR and HPLC analysis of vitamin D metabolism in primary culture cell clones strongly suggested that the extent of endogenously produced 1alpha,25-(OH)2-D3 was inversely related to 24-OHase activity, which could thus limit the antimitotic efficacy of 1alpha,25-(OH)2-D3 particularly at late stages of colon cancer progression.  相似文献   

13.
14.
15.
1,25(OH)(2)D(3) (calcitriol) has been shown to play an important role in cell proliferation, differentiation and immune responsiveness. The enzyme responsible for calcitriol synthesis 25 hydroxyvitamin D(3)-1alpha-hydroxylase (1alpha-OHase) has been reported in many human tissues. The aim of this study was to investigate the expression of 1alpha-OHase in gynaecological tissues. Using a highly specific nested touchdown PCR we examined the expression of 1alpha-OHase in normal and malignant endometrial tissue and in human endometrial Ishikawa cells. In addition, we analyzed the protein expression of 1alpha-OHase by Western blot. The expression of 1alpha-OHase in normal and malignant endometrial tissue and Ishikawa cells was detected and splice variants of the enzyme in Ishikawa cells were identified. These data suggest an alternative splicing of 1alpha-OHase in malignant endometrial tissue and cells. We postulate that the expression of 1alpha-OHase gene variants may contribute to the antiproliferative effects of calcitriol. In conclusion, the modulation of the 1alpha-OHase opens up a new target for vitamin D(3) related therapies in endometrial cancer.  相似文献   

16.
17.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

18.
hMAM启动子/增强子调控表达载体构建和调控作用   总被引:1,自引:0,他引:1  
目的构建人乳腺珠蛋白(human mammaglobin,hMAM)启动子/增强子调控报告基因表达载体,探讨hMAM启动子/增强子序列在乳腺癌细胞中的特异性调控作用。方法应用PCR技术,从基因组DNA中扩增出hMAM启动子/增强子DNA序列,构建于PGL3报告基因上游,分别转染体外培养的乳腺癌细胞MDA—MB-415、T47D及胃癌细胞7901,分析启动子和增强子序列对乳腺癌细胞的基因表达调控作用。结果酶切图谱分析、DNA序列测定表明成功构建hMAM启动子/增强子调控的表达载体;荧光素酶报告基因检测结果分析表明,hMAM启动子/增强子能够调控报告基因的表达。结论hMAM启动子/增强子,在MDA—MB-415乳腺癌细胞具有调控基因表达的作用;  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号