共查询到20条相似文献,搜索用时 0 毫秒
1.
Ontogeny of Receptor Binding Sites for [3 H]Glutamic Acid and [3 H]Kainic Acid in the Rat Cerebellum 总被引:1,自引:0,他引:1
The development of the specific binding sites for L-[3H]glutamic acid (KD = 370 nM) and for [3H]kainic acid (KD = 39 nM) was studied in the rat cerebellum. Specific binding at both sites remains low during the first week after birth but increases markedly during the second and third weeks after birth, when glutamatergic parallel fiber synaptogenesis occurs. The development of the kainate site lags behind that of the glutamate site, indicating their autonomy. 相似文献
2.
Abstract: The binding of [3H] γ-aminobutyric acid ([3H]GABA) and [3H]muscimol has been studied in purified synaptic plasma membrane (SPM) preparations from rat brain. Scatchard analysis of specific binding (defined as that displaced by 100 μMγ-aminobutyrate) indicated that the binding of both radiolabelled ligands was best described by a two component Langmuir adsorption isotherm. The apparent KD and Bmax values for [3H]GABA at 4°C were KD1, 20 nM; KD2,165 nM; Bmax1, 0.48 pmol;Bmax2, 6.0 pmol. mg?1; for [3H]muscimol at 4°C they were: KD1, 1.75 nM; KD2, 17.5 nM; Bmaxl, 0.84 pmol. mg?1; Bmax2, 4.8 pmol.mg?1; and for [3H]muscimol at 37°C they were: KD1, 7.0 nM; Km, 60 nM; Bmax], 0.5 pmol-mg?1; Bmax2, 7.2 pmol-mg1. Under the experimental conditions used, the similar Bmilx values for [3H]GABA and [3H]muscimol binding to the SPM preparations suggests that the high- and low-affinity components for the two radiolabeled ligands are identical. The effects of the GAB A antagonist bicuculline on the binding of [3H]muscimol at 4CC and 37°C were studied. At 4°C, antagonism of muscimol binding appeared to be competitive at the high-affinity site but noncompetitive at the low-affinity site. At 37°C, antagonism was again competitive at the high-affinity site but was of a mixed competitive/noncompetitive nature at the low-affinity site. Assuming that binding to the high-affinity site is associated with the pharmacological actions of bicuculline, the apparent KD values obtained suggest a pA2 value of 5.3 against [3H]muscimol at 4°C and 37°C. This figure is in good agreement with several estimates of the potency of bicuculline based on pharmacological measurements. Results from displacement studies using [3H]GABA and [3H]muscimol suggest that [3H]GABA might be a more satisfactory ligand than [3H]muscimol in GABA radioreceptor assays. 相似文献
3.
Abstract: A [3 H]muscimol radioreceptor assay was used to measure the levels of GAB A in mouse brain. The method is based on the competitive inhibition of [3 H]muscimol binding to the GABA receptor by GABA extracted from tissue. The specificity and accuracy of the method was established by comparative measurements of GABA levels by gas chromatography. GABA levels obtained by radioreceptor assay (R) and gas chromatography (GC) in different areas of mouse brain were (in μmol/g tissue ± S.E.M.): cerebral cortex 1.41 ± 0.06 (R), 1.50 ± 0.03 (GC); corpus striatum 1.70 ± 0.05 (R), 1.66 ± 0.01 (GC); cerebellum 1.15 ± 0.04 (R), 1.11 ± 0.07 (GC); hippocampus 1.35 ± 0.04 (R), 1.43 ± 0.04 (GC). The sensitivity of the assay was 5 pmol of GABA, which is sufficient to measure GABA levels in brain. The technique described is simple and rapid and it can be used for unpurified tissue extracts. 相似文献
4.
R. Niddam A. Dubois B. Scatton S. Arbilla S. Z. Langer 《Journal of neurochemistry》1987,49(3):890-899
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype. 相似文献
5.
Carme Solà Emili Martínez Lluïsa Camón Angel Pazos† Eduard Rodríguez-Farré 《Journal of neurochemistry》1993,60(5):1821-1834
Abstract: The effect of lindane administration on the specific binding of ligands to different sites on the GABAA receptor-ionophore complex was studied in the rat brain by receptor mapping autoradiography. [3 H]Muscimol (Mus), [3 H]flunitrazepam (Flu), and t -[35 S]butylbicyclophosphorothionate (TBPS) were used as specific ligands of GABA, benzodiazepine, and picrotoxinin binding sites, respectively. Rats received a single oral dose of 30 mg/kg lindane and they were classified into two groups according to the absence or presence of convulsions. Vehicle-treated groups acted as controls. The effect of the xenobiotic on ligand binding was measured in different brain areas and nuclei 12 min or 5 h after its administration. Lindane induced a generalized decrease in [35 S]TBPS binding, which was present shortly after dosing. In addition, [3 H]Flu binding was increased in lindane-treated animals, this modification also appearing shortly after administration but diminishing during the studied time. Finally, lindane induced a decrease in [3 H]Mus binding, which became more evident over time. These modifications were observed both in the presence and in the absence of convulsions. However, an increase in [3 H]-Mus binding was detected shortly after lindane-induced convulsions. The observed decrease in [35 S]TBPS binding is in agreement with the postulated action of lindane at the picrotoxinin binding site of the GABAA receptor chloride channel. The effects observed on the binding of [3 H]Flu and [3 H]Mus may be secondary to the action of lindane as an allosteric antagonist of the GABAA receptor. 相似文献
6.
Scrapie is a transmissible disease that results in progressive degeneration of the central nervous system and death. Although scrapie has been studied histopathologically, relatively little is known concerning neurotransmitter alterations. Specific [3H]muscimol binding to whole brain crude synaptic membranes (CSM) from mice clinically affected with scrapie was significantly (p less than 0.01) reduced, to approximately 73% of that of the controls. Of the brain regions examined, binding to only cerebral CSM was significantly (p less than 0.0001) decreased. Scatchard analyses of saturation curves revealed that the high-affinity (KD = 8 +/- 3 nM) site for muscimol was abolished in cerebral CSM from scrapie-infected mice, while the low-affinity site was unaffected. Binding of [3H]flunitrazepam to cerebral CSM was unaffected by scrapie and was stimulated by GABA to the same extent in both scrapie and control mice. These results suggest that scrapie agent 139A in C57BL/6J mice manifests a portion of its CNS pathology via a high-affinity GABA binding site that is unassociated with the benzodiazepine receptor. 相似文献
7.
Olfactory bulbs contain dendrodendritic synapses, which occur between granule cells and mitral cells, and gamma-aminobutyric acid (GABA) is thought to act as an inhibitory neurotransmitter at these synapses. Synaptosomes derived from the dendrodendritic synapses of the olfactory bulb were shown previously to contain considerable L-glutamate decarboxylase activity. The subcellular distribution and binding parameters of [3H]GABA and [3H]muscimol binding sites have now been determined in the rat olfactory bulb. Of all fractions examined, crude synaptic membranes (CSM) prepared from the dendrodendritic synaptosomes were shown to have the highest specific binding activity and accounted for nearly all of the total binding activity for both ligands. The specific binding activities for [3H]GABA and for [3H]muscimol were greatly increased after treating the CSM with 0.05% Triton X-100. Binding was shown to be Na+-independent, reversible, pharmacologically specific, and saturable. High- and low-affinity sites were detected for both ligands, and both classes of sites had appreciably lower KD values for muscimol (KD1 = 3.1 nM, KD2 = 25.1 nM) than for GABA (KD1 = 8.6 nM; KD2 = 63.7 nM). The amounts of the high-affinity binding sites for muscimol and GABA were similar (Bmax = 1.7 and 1.5 pmol/mg protein, respectively). The results of the present experiments indicate that the GABA and muscimol binding sites represent the GABA postsynaptic receptor, presumably on mitral cell dendrites, and provide further support for the hypothesis that GABA functions as a neurotransmitter at the dendrodendritic synapses in the olfactory bulb. 相似文献
8.
The presence of a [3H]muscimol binding site on the purified benzodiazepine receptor was demonstrated. The purified protein was apparently homogeneous as shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (stained with silver), with a molecular weight of 60,000 +/- 3000. The benzodiazepine binding sites were characterized as being of the central type and the [3H]flunitrazepam binding was enhanced by GABA. This activation was antagonized by bicuculline. [3H]Muscimol specifically binds to the benzodiazepine receptor. The Scatchard plot indicates a Kd of 23 nM and the ratio [3H]flunitrazepam/[3H]muscimol is approximately unity. 相似文献
9.
Abstract: [3 H] γ -Aminobutyric acid ([3 H]GABA) binding to purified lipids was examined in an organic solvent-aqueous partition system. In addition, the [3 H]GABA binding capacity in the partition system was compared with the capacity of lipids to alter sodium-dependent [3 H]GABA uptake into synaptosomes isolated from rat whole brains. [3 H]GABA was found to bind to all of the lipids studied in the organic solvent-aqueous partition system [phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), gangliosides, and sulfatide], although PS exhibited the greatest binding capacity. [3 H]GABA uptake into synaptosomes was enhanced by PS (48.0%) but was not altered by any other lipid. PS enhancement of [3 H]GABA uptake required the presence of sodium and was blocked by nipecotic acid (10 μ m ). These results suggest that PS may play a role in the sodium-dependent GABA reuptake process in the presynaptic nerve end. 相似文献
10.
Muscimol is one of the most potent agonist ligands at the gamma-aminobutyric acidA (GABAA) receptor. Analysis of its chemical structure showed it to be a candidate for photoaffinity labeling. In practice, UV irradiation at 254 nm both changed the UV spectrum of muscimol and induced an irreversible binding of [3H]-muscimol to rat cerebellar synaptosomal membrane. After 10 min of irradiation, using 10 nM [3H]muscimol, the specific portion of this binding was 270 fmol/mg protein. (Nonspecific binding was defined as that arising in the presence of 1 mM GABA.) Specific binding increased asymptotically up to 100 nM [3H]muscimol. Irradiation of the membranes themselves did not significantly alter the KD or Bmax of reversible [3H]muscimol binding. However, irradiation of [3H]muscimol reduced its capacity subsequently to photolabel the membranes by 86 +/- 3%. Dose-dependent inhibition of binding was observed with muscimol, GABA, and bicuculline methiodide; with 10 nM [3H]muscimol maximum inhibition was 70% of total labeling and the order of potencies of these three compounds was characteristic of labeling to the GABAA receptor. Baclofen, l-glutamate, and diazepam exerted no effect at high concentrations. SDS-PAGE of the photolabeled membranes indicated specific incorporation of radioactivity into two molecular-weight species. One failed to enter the separating gel, implying a molecular weight greater than 250,000 daltons (250 kD). The molecular weight of the other was identified by fluorography to be about 52,000 daltons (52 kD). 相似文献
11.
When rat brain membranes were incubated with the benzodiazepine agonist [3H]flunitrazepam or the partial inverse benzodiazepine agonist [3H]Ro 15-4513 in the presence of ultraviolet light one protein (P51) was specifically and irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. After digestion of the membranes with trypsin, protein P51 was degraded into several peptides. When P51 was photolabeled with [3H]Ro 15-4513, four peptides with apparent molecular weights of 39,000, 29,000, 21,000, and 17,000 were observed. When P51 was labeled with [3H]flunitrazepam, only two peptides with apparent molecular weights of 39,000 and 25,000 were obtained. Protein P55 was only partially degraded by trypsin, and whether it was labeled with [3H]flunitrazepam or [3H]Ro 15-4513 it yielded the same two proteolytic peptides with apparent molecular weights of 42,000 and 45,000. These results support the existence of at least two different benzodiazepine receptor subtypes associated with proteins P51 and P55. The different receptors seem to be differentially protected against treatment with trypsin. In addition, these results indicate that in the benzodiazepine receptor subtype associated with P51 benzodiazepine agonists and partial inverse benzodiazepine agonists irreversibly bind to different parts of the molecule. 相似文献
12.
Tapan K. Chatterjee Joseph G. Cannon Ranbir K. Bhatnagar 《Journal of neurochemistry》1987,49(4):1191-1201
The characteristics of [3H]hemicholinium-3 ([3H]HC-3) interactions with rat striatal membranes were investigated. Under the described assay conditions, [3H]-HC-3 binds with a saturable population of membrane binding sites having the following regional distribution: striatum much greater than hippocampus greater than or equal to cerebral cortex greater than cerebellum. The specific binding of [3H]HC-3 showed an obligatory requirement for NaCl; other halide salts of sodium or KCl failed to substitute for NaCl. The Scatchard transformation of saturation isotherm data generated a curvilinear plot with high- and low-affinity components of binding. The dissociation of [3H]HC-3 at infinite dilution was also multiexponential. The dissociation could, however, be accelerated if unlabeled HC-3 was included in the diluting buffer, and this increase in dissociation appeared to be dependent on the concentrations of unlabeled HC-3 used, with the maximal increase demonstrable at 100 nM. The dissociation was also dependent on the fractional saturation of binding sites with labeled HC-3, such that, at higher fractional saturation of binding sites, the overall dissociation was faster and the difference in the dissociation observed between "dilution only" and "dilution + unlabeled HC-3" was reduced. This occupancy-dependent change in dissociation could also be influenced by temperature and pH. Based on the results of these kinetic studies, the steady-state [3H]HC-3 binding data were analyzed for a homogeneous population of binding sites undergoing site-site interactions of the negative cooperative type. Such an analysis yielded a KD of 9.3 nM for the high-affinity state and a KD of 22.8 nM for the low-affinity state of binding sites, with a Bmax of 434 fmol/mg of protein. Competitive binding studies showed that unlabeled HC-3 was most potent in displacing [3H]HC-3, followed by choline. Other drugs known to have little influence on the synaptosomal sodium-dependent high-affinity choline uptake system (SDHACU) had no significant effect on [3H]HC-3 binding sites. Similarities in ionic dependencies, regional distributions, and pharmacological selectivities of [3H]HC-3 binding with synaptosomal SDHACU suggest that [3H]HC-3 selectively labels SDHACU sites located on presynaptic cholinergic neurons in rat CNS. We suggest that the two affinity states of [3H]HC-3 binding sites represent the different "functional" states of the SDHACU system. The binding of HC-3 (or choline) with the high-affinity state of the binding sites induces negative cooperative site-site interactions among the binding sites, resulting in the formation of a low-affinity binding state.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
13.
The present study demonstrates that [3H]imipramine binds to both high- and low-affinity imipramine binding components on membranes prepared from rat cerebral cortex. Scatchard and computer analyses of saturation experiments using a wide range of [3H]imipramine concentrations (0.5 nM-50 nM) revealed the presence of two binding components. Inhibition experiments in which membranes were incubated with [3H]imipramine and various concentrations of unlabelled imipramine gave shallow inhibition curves with a Hill coefficient of 0.60 +/- 0.04. When dissociation rates of imipramine were studied, biphasic dissociation curves were obtained with apparent half-times of dissociation of 2.5 +/- 0.4 min and 18.5 +/- 2.5 min. Thus analysis of saturation, competition, and dissociation experiments indicate that [3H]imipramine binds to low as well as high-affinity binding sites in rat cortex. 相似文献
14.
Abstract: [3 H]Dihydroergocryptine ([3 H]DHE) binds to a particulate preparation from Drosophila melanogaster heads at a level of 2.4 ± 0.4 pmol/mg protein, with an apparent dissociation constant of 2.0 ± 0.5 n M . The binding sites are inactivated by heat, pronase treatment, detergents, and sulfhydryl and disulfide reagents. [3 H]DHE binding is inhibited by low concentrations of serotonergic and α-adrenergic ligands. The specificity of the binding sites, as revealed by displacement studies, differs from that of [3 H]DHE binding sites in various vertebrate tissues. The [3 H]DHE binding sites may correspond to serotonergic receptors, and possibly, to additional classes of receptors for putative neurotransmitters in Drosophila . 相似文献
15.
Abstract: The effect of thiol reagents on the specific binding of the atypical neuroleptic, sulpiride, to rat striatal membranes was examined. Pretreatment of membranes with N -ethylmaleimide (NEM), but not with iodoacetamide or dithiothreitol (DTT), diminishes [3 H]sulpiride binding. The effect is dependent on time, temperature, and the concentration of NEM. The reaction proceeds with pseudo-first-order rate kinetics, indicating the involvement of a single essential SH group in the binding of [3 H]sulpiride to striatal membranes sites. Both sodium and sulpiride, but not nucleotides, protect the [3 H]sulpiride sites from NEM inactivation in a dose-dependent fashion. As sodium is essential for [3 H]sulpiride binding it is possible that in the presence of sodium and sulpiride a conformational change takes place that makes the essential SH group less accessible t o alkylation. 相似文献
16.
Abstract: With [3H]guanosine triphosphate ([3H]GTP) and [3H]β, γ -imidoguanosine 5′-triphosphate ([3H]GppNHp) as the labelled substrates, both the binding and the catabolism of guanine nucleotides have been studied in various brain membrane preparations. Both labelled nucleotides bound to a single class of noninteracting sites (KD= 0.1-0.5 μm ) in membranes from various brain regions (hippocampus, striatum, cerebral cortex). Unlabelled GTP, GppNHp, and guanosine diphosphate (GDP) but not guanosine monophosphate (GMP) and guanosine competitively inhibited the specific binding of [3H]guanine nucleotides. Calcium (0.1–5 mm ) partially prevented the binding of [3H]GTP and [3H]GppNHp to hippocampal and striatal membranes. This resulted from both an increased catabolism of [3H]GTP (into [3H]guanosine) and the likely formation of Ca-guanine nucleotide2- complexes. The blockade of guanine nucleotide catabolism was responsible for the enhanced binding of [3H]GTP to hippocampal membranes in the presence of 0.1 mm -ATP or 0.1 mm -GMP. Striatal lesions with kainic acid produced both a 50% reduction of the number of specific guanine nucleotide binding sites and an acceleration of [3H]GTP and [3H]GppNHp catabolism (into [3H]guanosine) in membranes from the lesioned striatum. This suggests that guanine nucleotide binding sites were associated (at least in part) with intrinsic neurones whereas the catabolising enzyme(s) would be (mainly) located to glial cells (which proliferate after kainic acid lesion). The characteristics of the [3H]guanine nucleotide binding sites strongly suggest that they may correspond to the GTP subunits regulating neurotransmitter receptors including those labelled with [3H]5-hydroxytryptamine ([3H]5-HT) in the rat brain. 相似文献
17.
Abstract— The specific binding of [3 H]spiperone and [3 H]domperidone, as defined by 1 μ m -(+)butaclamol, was compared in homogenates of bovine retina and caudate nucleus. Scatchard analyses of saturation data for [3 H]spiperone binding yielded dissociation constants ( K d ) of 0.35 n m in the retina and 0.64 n m in the caudate nucleus. Comparison of the maximum number of binding sites (Bmax ) present in each tissue indicated that the density of sites in bovine caudate nucleus (270 fmol/mg protein) was approximately three times higher than in bovine retina (92 fmol/mg protein). This difference was even more marked in guinea pig tissues, with a ratio of 7:1 between corpus striatum and retina. The pharmacological analysis of [3 H]spiperone binding in both the bovine retina and caudate nucleus indicated an interaction with dopaminergic rather than serotonergic sites. However, inhibition curves obtained to dopaminergic agonists in the bovine retina were significantly steeper than those observed in the bovine caudate nucleus, as reflected in the greater Hill coefficients obtained for these agents in the retina. Furthermore, only a small amount of specific [3 H]domperidone binding was observed in either the bovine caudate nucleus or the guinea pig striatum, whilst no specific [3 H]domperidone binding was detectable in homogenates of either bovine or guinea pig retina. These data suggest that the retina possesses only a small population of dopaminergic D2 sites and that these binding sites may differ from those present in the caudate nucleus. 相似文献
18.
Certain drugs exhibit a remarkable correlation between their ability to inhibit synaptosomal uptake of dopamine and the binding of [3H]mazindol to striatal membranes. To investigate the role of mazindol binding sites in the dopamine uptake process and the fate of these sites (labeling dopaminergic neurons) during aging, we have examined the properties of mazindol binding and dopamine uptake in individual young and old rats. There was a 48% decrease (p = 0.0001) in the Bmax of mazindol binding and a 23% decrease (p = 0.0166) in the Vmax of dopamine uptake with no apparent change in their affinities with age. Regression analysis of the relationship between Bmax and Vmax exhibited a significant correlation in old (p = 0.0156) but not young rats (p = 0.1398). These data suggest that the number of mazindol binding sites decreases with age and that the number of sites on the dopamine transporter complex far exceeds the number required to elicit maximal dopamine uptake. 相似文献
19.
Håkan Hall† Ilse Wedel Christer Halldin† Jutta Kopp† Lars Farde† 《Journal of neurochemistry》1990,55(6):2048-2057
The aim of the present investigation was to study and compare the in vitro binding properties of the two radioligands N-[3H]methylspiperone ([3H]NMSP) and [3H]raclopride. These compounds, labeled with 11C, have been extensively used in positron emission tomography studies on central dopamine D2 receptors in schizophrenic patients, although with diverging results. One study (using [11C]NMSP) showed an increased dopamine receptor density in drug-naive schizophrenic patients, whereas in another study (using [11C]raclopride) the density in schizophrenic patients was no different from that in healthy controls. In the present study, using in vitro binding techniques, the density of the binding sites was found to be similar irrespective of which of the two radioligands was used (20 fmol/mg wet weight in rat striatum and 10 fmol/mg in human putamen; the 5-hydroxytryptamine 2 receptors were blocked with 40 nM ketanserin). [3H]NMSP had a 10-fold higher affinity (KD, 0.3 nM in rat striatum and 0.2 nM in human putamen) than [3H]raclopride (KD, 2.1 nM in rat striatum and 3.9 nM in human putamen), which was consistent with the longer dissociation half-life of [3H]NMSP compared with [3H]raclopride (14.8 and 1.19 min, respectively). There was an approximate overall similarity between the inhibition constants for five dopamine antagonists, chlorpromazine, haloperidol, raclopride, remoxipride, and NMSP, when using either radioligand. The Ki values were, however, two- to four-fold higher when using [3H]NMSP as the radioligand, irrespective of inhibiting compound, except for chlorpromazine (and haloperidol in human putamen). NMSP was found to inhibit the binding of [3H]raclopride competitively, whereas raclopride inhibited the binding of [3H]NMSP both competitively and noncompetitively. This difference suggests that part of the binding site is exclusively used by NMSP and can only be allosterically interfered with by raclopride. It is proposed that [3H]NMSP binds to an additional set of accessory binding sites, presumably located more distantly from the agonist binding active site than the sites to which [3H]raclopride binds. 相似文献
20.
Abstract: Choline uptake by cholinergic nerve terminals is increased by depolarization; the literature suggests that this results from either the appearance of occult transporters or the increased activity of existing ones. The present experiments attempt to clarify the mechanism by which choline transport is regulated by testing if the preexposure of synaptosomes to choline mustard aziridinium ion prevents the stimulation-induced appearance of hemicholinium-3 binding sites and/or choline transport activity. Choline mustard inhibited irreversibly most of the “ground-state” (basal) high-affinity choline transport but only 50% of “ground-state” hemicholinium-3 binding sites. Exposure of both striatal and hippocampal synaptosomes to the mustard, before stimulation, inhibited K+-stimulated increases in choline transport and of [3H]hemicholinium-3 binding. We conclude that the mechanism by which choline transport is regulated involves the increased activity of a pool of transport sites that are occluded to hemicholinium-3 but are available to choline mustard aziridinium ion, and presumably to choline, before stimulation. However, the concentration of mustard needed to inhibit the stimulation-induced increase of [3H]hemicholinium-3 binding and choline transport was lower for striatal synaptosomes than for hippocampal synaptosomes. In the absence of extracellular Ca2+ or presence of high Mg2+ levels, the choline mustard did not prevent the appearance of extra striatal hemicholinium-3 binding sites. Also, high Mg2+ levels removed the ability of the mustard to inhibit K+-stimulated increases of either [3H]hemicholinium-3 binding or choline transport by hippocampal synaptosomes. In contrast, the preexposure of hippocampal synaptosomes to the mustard in the presence of a calcium ionophore (A23187) reduced the concentration of inhibitor needed to prevent the activation of [3H]hemicholinium-3 binding and choline uptake. Thus, we conclude that the ability of the choline mustard to alkylate the pool of choline transporters that are activated by stimulation appears dependent on the entry of extracellular Ca2+. 相似文献