首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible causes of blossom-end rot (BER) in tomato fruitwere investigated by comparing the uptake of calcium by theroots, the distribution of 45Ca within the fruit and the vascularbundle network in the fruit of susceptible cultivars (Calypsoand Spectra) with those of a less susceptible cultivar (Counter)grown in a range of salinities (electrical conductivity of 5,10 and 15 mS cm–1). The daily calcium uptake rates at5 mS cm–1 as estimated from the xylem exudation of thedecapitated stem stump in young plants of Calypso and old plantsof Spectra, were lower than that of Counter. The uptake of 45Caby, and the transport to, the distal part of the detached fruitof susceptible cultivars, especially Calypso, were less thanin Counter at 10 mS cm–1. The number of vascular bundlesin both proximal and distal fruit tissues was similar in allcultivars and was only slightly reduced by salinity. However,the number of bundles containing lignified xylem vessels, asdetected by safranin staining, was reduced substantially bysalinity, particularly in Calypso. The estimated area of thefruit tissue served by individual xylem bundles in the BER susceptiblefruit grown at high salinity was greater than in Counter. Theincidence of BER in all trusses was linearly related to theproduct of average daily irradiance and daily temperature throughoutthe year. Temperature appears to be the major environmentalfactor which induces BER, regardless of cultivars and salinitytreatment. The most likely causes of BER in susceptible cultivarsare the interactions of (a) light and temperature on fruit enlargement,(b) inadequate xylem tissue development in the fruit and (c)competition between leaves and fruit for the available Ca. Key words: Lycopersicon esculentum, calcium transport, susceptibility to blossom-end rot, root exudation, xylem  相似文献   

2.
Factors affecting the uptake and distribution of calcium (Ca)by detached tomato (Lycopersicon esculentum Mill.) fruit wereinvestigated in seven cultivars with different susceptibilitiesto blossom-end rot (BER), a physiological disorder caused byCa deficiency. Plants were grown with different levels of salinityin the root zone or under shade to induce BER. In addition,fruit grown at different salinities were treated with CME, aninhibitor of auxin transport to alter IAA movement. The basipetalmovement of indole-3-acetic acid (IAA) out of detached fruit(i.e. IAA efflux) was determined concurrently with 45Ca uptaketo assess the possible involvement of IAA in Ca import or theincidence of BER. High salinity in the root zone during fruitdevelopment decreased both the uptake and distribution of 43Cato the blossom-end of the detached fruit. Shading and the applicationof CME reduced 45Ca uptake to a lesser extent. IAA efflux, however,was not consistently reduced by these treatments. Neither theuptake and transport of 45Ca within, nor the efflux of IAA from,detached fruit was related to the cultivar susceptibility toBER. The proposed role of IAA on the uptake and distributionof Ca by tomato fruit is assessed. Key words: Tomato, calcium, IAA, blossom-end rot, salinity  相似文献   

3.
HO  LIM C.; ADAMS  PETER 《Annals of botany》1989,64(4):373-382
Tomato fruit grown in diurnally fluctuating salinities (8 mScm–1 during the day and 3 mS cm–1 at night; 8/3mS cm–1), accumulated the same amount of dry matter andmagnesium (Mg) as those in constant 3 or 8 mS cm–1, butan intermediate amount of calcium (Ca). Raising the salinityof the nutrient solution by enriching with macronutrients orby adding NaCl had similar effects. The uptake of 45Ca by tomato plants during the day was greaterthan at night and was reduced by salinity in both periods. Whilethe uptake of 45Ca by 8/3 mS plants at night was similar tothat of 3 mS plants, the daily uptake was less than that in3 and 5.5 mS plants. The Ca content of tomato fruit increased with truss number at3 and 5.5 mS cm–1 but not at 8/3 and 8 mS cm–1.Within the same truss, the distal fruit had a lower Ca contentbut higher Mg content than the proximal fruit. The reductionin Ca content of the distal fruit at 8/3 mS cm–1 was similarto that at 5.5 mS cm–1. The Ca content of the tissue atthe distal end of the 8/3 mS fruit was lower than that of the5.5 mS fruit. Similarly, the distribution of 45Ca to the distalhalf of the detached 8/3 mS fruit was less than that of 5.5mS fruit. A reduced uptake and inadequate distribution of Cato the truss and to the distal end of the 8/3 mS fruit werethe main causes of these differences. Lycopersicon esculentum(Mill.), tomato, fruit, calcium, magnesium, diurnal salinity  相似文献   

4.
Tomato fruit on plants grown in circulating nutrient solutionexhibited a diurnal cycle in growth rate, measured as a changein diameter, with a maximum during thc day. The diurnal growthcycle was less evident in those fruit grown at high electricalconductivity (17 mS), or on days of reduced irradiance. Girdledfruit of low conductivity plants grew at a much reduced ratewith a diurnal cycle in reverse to that of ungirdled fruit,while girdled fruit of high conductivity plants showed no diurnalgrowth. The evidence suggests that phloem and xylem water transportinto fruit operate on opposite diurnal cycles. Partitioning of available xylem water in detached fruit betweenthe calyx and berry, as well as within the berry, was determinedby berry size and relative humidity in the air. Although berrytranspiration rate was unaffected by conductivity treatmentduring plant growth, water uptake capacity was greatly reducedin the berry from high conductivity plants, suggesting an increasedresistance in the xylem transport system within the fruit. Key words: Salinity, electrical conductivity, tomato fruit, xylem transport, transpiration  相似文献   

5.
HO  LIM C. 《Annals of botany》1989,63(2):281-288
Diurnal uptake and distribution of 45Ca in young fruiting tomatoplants were assessed 12 or 24 h after 45Ca was applied to thenutrient solution at the beginning of either the light (12 h)or the dark (12 h) period. During the experiment, the salinityof the nutrient solution (measured as electrical conductivity,EC) was either 2·5 or 17 mS cm–1 and the relativehumidity (measured as vapour pressure deficit, VPD) was either0·2 or 0·6 kPa The uptake of 45Ca by a tomato plant over 12 h was higher inthe light than in the dark but the difference was less at lowhumidity. More 45Ca was transported from the roots to the shootin the light than in the dark. More than half of the 45Ca inthe shoot was accumulated by the stem; the proportion of 45Cain the stem was greater in the dark and was further enhancedby high humidity to more than 80% of the 45Ca in the shoot.The accumulation of 45Ca by the fruit truss in the dark wasgreater than in the light in all experimental conditions. Underlow humidity the accumulation of 45Ca by young leaves was similarin both light and dark. In high humidity there was considerablyless accumulation of 45Ca by the young leaves in the dark The uptake of 45Ca continued over 24 h but the transport of45Ca to individual organs in the second 12 h period was affectedby both light and humidity. Some of the 45Ca accumulated byyoung leaves and fruit in the second period appears to havebeen derived from 45Ca released from the xylem wall along thetransport pathway in the stem The roles of root pressure and transpiration in the diurnalaccumulation of calcium in young fruit and leaves are discussed Calcium, diurnal translocation, tomato, young fruit and leaves  相似文献   

6.
P. Adams  L. C. Ho 《Plant and Soil》1993,154(1):127-132
Studies of Ca uptake and distribution in relation to environmental variables were used to relate Ca status of tomato fruit to blossom-end rot (BER) incidence. Ca uptake was highly correlated with solar radiation and root temperature. The rate of Ca uptake decreased linearly with increasing salinity. High humidity reduced Ca import by the leaves but increased that by the fruit. While total plant dry weight was reduced more than fruit dry weight by salinity, total Ca uptake and the Ca content of the fruit were decreased similarly. Thus, the concentration of calcium in the fruit was substantially reduced by salinity. The distal half of the fruit contained less Ca than the proximal half. The lowest % Ca was found in the distal placenta and locular tissues, where BER first develops. The incidence of BER was often stimulated more by high salinity achieved with the addition of major nutrients than with NaCl. The cause of BER is usually an interaction between the effects of irradiance and ambient temperature on fruit growth and the effects of environmental stress on calcium uptake and distribution within the whole plant.  相似文献   

7.
Ho  L. C.; Adams  P. 《Annals of botany》1994,73(5):539-545
The regulation of the partitioning of dry matter and calciumin relation to fruit growth was investigated in cucumber plantsgrown in the salinity range of 3-8 mS cm-1 in NFT (NutrientFilm Culture), with or without a fruit pruning treatment. Thedry weight gain of the plants was proportional to the outdoorintegral irradiance, with a common daily rate of 1 g MJ-1 m-2in two crops grown under summer (18 MJ m-2 d-1) and autumn (7MJ m-2 d-1) conditions. Within the salinity range studied, thereduction of plant dry weight was 9% mS-1 cm-1. However, fruitdry weight was only reduced at salinities above 5·5 mScm-1, although the daily dry matter accumulation by fruit, asa percentage of total dry matter accumulation, was increased.Salinity reduced the dry matter accumulation in the young shootproportionally more than in the fruit. Although the total plantCa content was reduced by 13% mS-1 cm-1, the Ca content of theyoung shoot was reduced by 16·6%, compared to 11% inthe fruit. Pruning fruit reduced neither plant dry weight norCa uptake. The growth of the remaining fruit, and to a lesserdegree of the young shoot, accounted for all surplus assimilates.Thus, fruit were the dominant sinks for assimilates whilst themature leaves were the strongest sinks for Ca. Nevertheless,the fruit sustained the capacity to import Ca better than theyoung shoot, when supplies of both assimilates and Ca were reducedby high salinity.Copyright 1994, 1999 Academic Press Cucumber, Cucumis sativus L., salinity, fruit pruning, dry matter and calcium  相似文献   

8.
The distribution of hydraulic resistances in xylem throughout the pathway leading to the tomato fruit was investigated. Previous work had indicated that there were large resistances within the supporting sections of this pathway (the peduncle and pedicel), perhaps associated with interruptions in the xylem. These high resistances are believed to impede calcium flux into the fruit and thus impair fruit development. It is shown here that fruit on intact plants do not shrink detectably during drought, even when the drought is sufficient to cause marked shrinkage of leaves and visible wilting of the shoot. In explants, it is possible to induce back‐flow from the fruit into the stem (probably via the xylem) but this flow is small and very slow. These observations support the view that there is a large hydraulic resistance in the pathway between fruit and stem. When pulses of water were made available within explants, by scorching of one leaflet, there was a rapid swelling of leaves and sepals. Such rapid fluxes indicate the presence of strong hydraulic (xylem) connections throughout the pathway between leaf and calyx. This shows that there are no significant hydraulic constrictions in the xylem proximal to the calyx. This finding is contrary to some previous conclusions but it is supported by experiments with dyes which showed continuous, functional xylem throughout the peduncle and pedicel. Calculations show that over 90% of the hydraulic resistance between stem and fruit must reside within the fruit pericarp. Implications for calcium nutrition are discussed.  相似文献   

9.
R. T. Besford 《Plant and Soil》1978,50(1-3):179-191
Summary Three tomato varieties, Amberley Cross, VF-145 and VF-13L (the last two reported to show K-deficiency symptoms independent of the amount of K applied) were grown in sand with three concentrations of applied nutrient K at a constant high level of Ca. There was a varietal difference in the K concentration and total K uptake into the plants. The Mg concentrations in the fruit were unaffected by K nutrition but the concentrations fell in the leaves of all varieties when the nutrient K was increased above 0.28 meq/l.While the concentration of Ca in the leaves of Amberley Cross was not significantly reduced by raising the concentration of K in the nutrient feed, there was a reduction in the varieties VF-145 and VF-13L. Maximum concentrations of Ca were present in fruit of all varieties receiving 2 meq K+/l, and that present in fruit of Amberley Cross was significantly higher than in fruit from either VF-145 or VF-13L. Comparing the varieties in the 10.2 meq K+/l treatment, fruit of VF-13L contained the lowest concentration and total amount of Ca, and had the highest incidence of blossom-end rot. VF-13L was the most susceptible to blossom-end rot, particularly in the highest K treatment, while Amberley Cross was the only variety free of symptoms in all three nutrient treatments.  相似文献   

10.
The aim of this work was to investigate whether parthenocarpicfruit growth could avoid flushing, i.e. an irregular yield pattern,in sweet pepper. Plants were grown in a greenhouse compartmentfrom April until August. Half of the plants were grown withouta fruit set treatment (control), whereas parthenocarpic fruitswere allowed to develop on the other plants by preventing self-pollinationand applying auxin to the stigma. For node positions 3 to 17,fruit set per node varied between 21 and 55% for control plants[coefficient of variation (CV) = 11%], whereas auxin-treatedplants showed much less variation in fruit set (41–57%;CV = 5%) and average fruit set was higher. In agreement withfruit set, fruit yield was also much more regular in the auxin-treatedplants. Fruit fresh yield varied between 0.2 and 1.0 kg m-2forcontrol plants (CV = 20%), and between 0.4 and 0.8 kg m-2forauxin-treated plants (CV = 9%). Results showed that developingseeds in sweet pepper fruits are the main cause of the abortionof new flowers, and irregular fruit set and yield. Parthenocarpicfruit growth resulted in flatter, 30% smaller fruits, becauseof a reduction in fruit growth rate; the duration of fruit growthwas 1 week longer than for fruits from control plants. Parthenocarpicfruits were hardly affected by blossom-end rot (BER) with only1% of fruits being affected compared to 31% in the control.Total dry mass production was the same for treated and controlplants; however, in auxin-treated plants, 50% of the total drymass was allocated to the fruits, compared to 58% in controlplants. Copyright 2001 Annals of Botany Company Abortion, auxin, BER, blossom-end rot, Capsicum annuum L., flushing, fruit set, irregular yield pattern, parthenocarpy, sweet pepper  相似文献   

11.
Although gibberellins (GAs) have been shown to induce development of the physiological disorder blossom-end rot (BER) in tomato fruit (Solanum lycopersicum), the mechanisms involved remain largely unexplored. BER is believed to result from calcium (Ca) deficiency, but the relationship between Ca content and BER incidence is not strong. Our objectives were to better understand how GAs and a GA biosynthesis inhibitor affect BER development in tomato fruit. Tomato plants of two BER-susceptible cultivars, ‘Ace 55 (Vf)’ and ‘AB2,’ were grown in a greenhouse environment and subjected to Ca-deficiency conditions. Plants were treated weekly during fruit growth and development with 300 mg L?1 GA4+7, 300 mg L?1 prohexadione-calcium (Apogee®, a GA biosynthesis inhibitor), or water beginning 1 day after flower pollination. GA4+7 treatment induced an increase in BER incidence in both cultivars up to 100%, whereas ‘Ace 55 (Vf)’ and ‘AB2’ plants treated with Apogee did not show BER incidence. The number of functional xylem vessels was higher in the placental and pericarp tissue of tomato fruit treated with Apogee at the early stages of fruit growth. Treatment with Apogee also increased fruit pericarp Ca concentration. GA4+7 treatment enhanced the expression of the putative CAX and Ca-ATPase genes, that code for proteins involved in Ca movement into storage organelles. The lowest water-soluble apoplastic Ca concentration and the highest membrane leakage values were observed in the pericarp of GA4+7-treated fruit. These results suggest that GAs consistently reduced fruit Ca uptake and water-soluble apoplastic Ca concentration, leading to leakier plasma membranes and an increase in BER development in fruit tissue of both tomato cultivars.  相似文献   

12.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

13.
The relative importance of growth rate and calcium concentration in sweet pepper fruits (Capsicum annuum L.) for the induction of blossom-end rot (BER) was investigated in (1) four pollination treatments in one cultivar, (2) four cultivars with the same fruit load and (3) three fruit load treatments in four cultivars. For fruits with the same pollination treatment those eventually developing BER had a higher initial fruit growth rate than those not developing BER. Within the same experiment both the growth rate of the young fruit and BER increased with the number of seeds. The Ca concentration of the pericarp in mature fruits was negatively related to both fruit size and BER incidence. Differences in levels of BER between different pollination experiments could not be explained solely by differences in growth rate of the young fruit, but related to different Ca concentrations in the mature fruits. In the spring, but not in the summer, cultivars more susceptible to BER had a larger final size but lower Ca concentration in the young fruit than the resistant ones. By lowering the fruit load in the summer both the final fruit size and the BER incidence increased, but the Ca concentrations of both proximal and distal pericarp in the young fruit of all cultivars were not consistently affected. Despite a correlation between growth rate and low Ca concentration in the fruit, the incidence of BER may only be predicted from separate effects of fruit growth and of Ca concentration of fruit. The data indicated that at a higher growth rate a higher Ca concentration is required to prevent the induction of BER. The usefulness of the total Ca concentration of the fruit for determining the critical Ca concentration in the induction of BER is discussed.Key words: Capiscum annuum L., sweet pepper, blossom-end rot, calcium, growth rate, pollination, fruit load.   相似文献   

14.
An analysis of the accumulation of water and dry matter in tomato fruit   总被引:24,自引:6,他引:18  
Abstract Previously published data from tomato plants grown in nutrient solutions having one of three electrical conductivities (2, 12 and 17 mS cm?1) were analysed. The rate of water import into the fruit, and the proportion of this conducted by the xylem stream were calculated from the daily rates of transpiration and the net accumulation of water and calcium. The rate of water import decreased as the conductivity of the nutrient solution rose, the maximum daily import rates in the third week after pollination being 3.2, 3.0 and 1.8 g fruit?1 d?1 for fruit grown at 2, 12 and 17 mS cm?1, respectively. During fruit development, the proportion of water imported via the xylem fell from 8–15% to 1–2% at maturity. The principal source of water for tomato fruit growth was phloem sap. Based on the daily rates of net dry matter accumulation, respiration and phloem water import, the calculated dry matter concentration of the phloem sap declined from 7 to 3%, or from 12.5 to 7.8% during fruit development in low or high salinity, respectively. The similar dry matter accumulation of fruit grown at different salinities was due to changes in both volume and concentration of phloem sap. Potassium salts in tomato fruit were calculated lo have contributed –0.29, –0.48 and –0.58 MPa to total fruit osmotic potential in the 2, 12 and 17 mS cm?1 treatments, respectively, which accounted for 38% or 49% of the measured total osmotic potential of the 2 mS cm?1 or 17 mS cm?1 treatments. The contribution of hexoses to total fruit osmotic potential in the young fruit was from about –0.1 to –0.2 MPa at all salinities. The osmotic potential of tomato fruit is regulated more by potassium salts than by hexoses.  相似文献   

15.
An internal blackening disorder may cause substantial losses in the value of tomatoes grown for processing. The disorder resembles an internal form of blossom-end rot and appears to be more common in dry seasons. In an experiment to test whether the internal blackening is caused by water deficit and whether it is indeed blossom-end rot, plots of cv. Cannery Row were irrigated to keep the soil moisture deficit <50 mm and others were sheltered from rain and not irrigated from early flowering onwards. Shoot growth (total and fruit dry mass) was measured destructively at intervals, and root growth and death nondestructively using minirhizotrons. There was a greater incidence of internal blackening and blossom-end rot, and lower Ca concentrations, in the fruit of non-irrigated plants. Root growth and root death were accelerated in these plants around the time that internally-blackened fruit were set. Although the internal blackening syndrome shared some features with blossom-end rot some differences were apparent in this experiment. It is suggested that internal blackening could have resulted from increased root competition for photosynthate, leading to abnormal seed development. Root turnover was appreciable (30–40% of the roots survived 28 days). This suggests there may be substantial errors in contemporary models of dry matter partitioning in tomato crops.  相似文献   

16.
Light is recognized as crucial in determining high quality of fleshy fruits, for example, kiwifruit [Actinidia deliciosa var. deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson]. Among the possible mechanisms through which light improves the quality of kiwifruit berry, there may be a direct morphogenic role on the differentiation of the fruit's vascular system, though this has not yet been investigated. The present study's aim was to determine (1) whether light positively affects the differentiation of the vascular system of the fruit and/or the pedicel, and, if so, (2) which component (xylem, phloem, or both) is more affected, and (3) in which period of the berry's development the improvement of the vascular differentiation (if any) occurs. To this end, fruit morphogenesis of kiwifruit was studied in two developmental environments (i.e., in full sunlight and in paper bags that reduced the full sunlight to 10%), and in two phases of fruit development (i.e., 1 and 5 months [harvest] after anthesis). During the growth period, the type of environment did not affect the differentiation pattern of the vascular system in the three types of bundles present in the fruit. However, in comparison with shade, light improved the vasculature in the fruit pericarp and pedicel, inducing a consistently higher extent of the xylary component in the main bundles of the fruit and pedicel, principally due to an increase in the number of xylem elements. The phloic component was also increased by light, but to a much lesser extent than that of the xylary. During the entire period of development, light-grown fruits contained higher concentrations of calcium and magnesium, as compared with shade-grown fruits. In conclusion, in the berry of Actinidia deliciosa, light enhances the differentiation of the vascular system, in particular the xylary component. The hypothesis that fruit quality is improved through a more efficient translocation of specific mineral nutrients (e.g., calcium) via the xylem is presented.  相似文献   

17.
Uptake and partitioning through the xylem and phloem of K+,Na+, Mg2+ , Ca2+ and Cl were studied over a 9 d intervalduring late vegetative growth of castor bean (Ricinus communisL.) plants exposed to a mean salinity stress of 128 mol m–3NaCl. Empirically based models of flow and utilization of eachion within the whole plant were constructed using informationon ion increments of plant parts, molar ratios of ions to carbonin phloem sap sampled from petioles and stem internodes andpreviously derived information on carbon flow between plantsparts in xylem and phloem in identical plant material. Salientfeatures of the plant budget for K+ were prominent depositionin leaves, high mobility of K+ in phloem, high rates of cyclingthrough leaves and downward translocation of K+ providing theroot with a large excess of K+ . Corresponding data for Na+showed marked retention in the root, lateral uptake from xylemby hypocotyl, stem internodes and petioles leading to low intakeby young leaf laminae and substantial cycling from older leavesback to the root. The partitioning of the anionic componentof NaCl salinity, Cl, contrasted to that of Na+ in thatit was not substantially retained in the root, but depositedmore or less uniformly in stem, petiole and leaf lamina tissues.The flow pattern for Mg2+ showed relatively even depositionthrough the plant but some preferential uptake by young leaves,generally lesser export than import by leaf laminae, and a returnflow of Mg2+ from shoot to root considerably less than the recordedincrement of the root. Ca2+ partitioning contrasted with thatof the other ions in showing extremely poor phloem mobility,leading to progressive preferential accumulation in leaf laminaeand negligible cycling of the element through leaves or root.Features of the response of Ricinus to salinity shown in thepresent study were discussed with data from similar modellingstudies on white lupin (Lupinus albus L.) and barley (Hordeumvulgare L.) Key words: Ricinus communis L, potassium, sodium, chloride, calcium, magnesium, phloem, xylem, transport, partitioning, salinity  相似文献   

18.
During the latter stages of development in fleshy fruit, water flow through the xylem declines markedly and the requirements of transpiration and further expansion are fulfilled primarily by the phloem. We evaluated the hypothesis that cessation of water transport through the xylem results from disruption or occlusion of pedicel and berry xylem conduits (hydraulic isolation). Xylem hydraulic resistance (Rh) was measured in developing fruit of grape (Vitis vinifera ‘Chardonnay’) 20 to 100 d after anthesis (DAA) and compared with observations of xylem anatomy by light and cryo-scanning electron microscopy and expression of six plasma membrane intrinsic protein (PIP) aquaporin genes (VvPIP1;1, VvPIP1;2, VvPIP1;3, VvPIP2;1, VvPIP2;2, VvPIP2;3). There was a significant increase in whole berry Rh and receptacle Rh in the latter stages of ripening (80–100 DAA), which was associated with deposition of gels or solutes in many receptacle xylem conduits. Peaks in the expression of some aquaporin isoforms corresponded to lower whole berry Rh 60 to 80 DAA, and the increase in Rh beginning at 80 DAA correlated with decreases in the expression of the two most predominantly expressed PIP genes. Although significant, the increase in berry Rh was not great enough, and occurred too late in development, to explain the decline in xylem flow that occurs at 60 to 75 DAA. The evidence suggests that the fruit is not hydraulically isolated from the parent plant by xylem occlusion but, rather, is “hydraulically buffered” by water delivered via the phloem.The development of grape (Vitis vinifera) berries is typical of many fleshy fruits, following a double sigmoid pattern of growth with three distinct phases: an initial phase of rapid cell division and expansion in green berries, a short transitory phase of very little growth, and a final phase in which growth is reinitiated and the fruit ripens. The transition to the ripening phase is accompanied by many physiological changes, such as the production of anthocyanins and fruit softening. In grape, these distinctive and highly visible physiological changes are collectively referred to as veraison. The rapid accumulation of sugars that is initiated in the berry mesocarp around the time of veraison is accompanied by a dramatic shift in the proportion of xylem and phloem transport (Lang and Thorpe, 1989; Greenspan et al., 1994, 1996). This same shift, albeit more gradual, occurs in many other fleshy fruits such as tomato (Solanum lycopersicum; Ho et al., 1987), apple (Malus domestica; Lang and Ryan, 1994; Drazeta et al., 2004), and kiwifruit (Actinidia deliciosa; Dichio et al., 2003) as well as in the flowers of tropical trees (Chapotin et al., 2003). The sudden reduction in xylem transport to the fruit is perceived as a mechanism to hydraulically isolate the fruit and buffer them from environmental stresses experienced by the parent plant.Using mass balance techniques, Greenspan et al. (1994, 1996) reported major changes in the role of the xylem and phloem in water transport to the grape berry at veraison. During the first growth phase, the xylem provides the majority of water transport into the berry. In the final growth stage, the phloem provides more than 80% of the berry''s water requirements and the contribution of the xylem becomes negligible. Berry water status also becomes apparently uncoupled from plant water status after veraison. Before veraison, diurnal contractions in berry diameter were strongly related to changes in plant (stem) water potential, while after veraison, diurnal contractions were greatly reduced and unrelated to changes in stem water potential (Matthews and Shackel, 2005). A similar lack of response was also observed for mesocarp cell turgor after veraison (Thomas et al., 2006). Thus, it is clear that some mechanism acts to decouple berry water relations from the water status of the parent plant.Over the past two decades, a general consensus has developed that the berry xylem becomes physically disrupted after veraison, effectively blocking the xylem pathway and isolating the fruit essentially as a whole from the parent plant (During et al., 1987; Findlay et al., 1987; Lang and Ryan, 1994). Evidence for this has been provided by observations of dye uptake into the berry through the xylem. When the cut pedicel of a preveraison berry is submerged in dye, the dye is taken up into peripheral and axial xylem conduits of the entire berry (Findlay et al., 1987; Creasy et al., 1993; Rogiers et al., 2001). After veraison, dye uptake is limited to the base of the berry vasculature (brush). From this evidence, together with micrographs that appeared to show stretched and ruptured xylem conduits in postveraison berries, it was inferred that the lignified tracheids present at veraison were physically torn apart by the expansion of the berry that occurred postveraison.Recent experimental work using a range of techniques suggests that the hypothesis of physical disruption may be oversimplified and that the berry xylem remains at least potentially functional after veraison (Bondada et al., 2005; Keller et al., 2006; Chatelet et al., 2008b). The results of Chatelet et al. (2008a, 2008b) demonstrate that the majority of xylem conduits in the berry remain intact after veraison and suggest that xylem development (growth of new conduits) continues well into the postveraison growth phase. Using both a modified pressure plate/membrane apparatus and a wicking technique, it was demonstrated that dye moved through the xylem of postveraison berries when a hydrostatic pressure or matric gradient was applied between the pedicel and the cut stylar surface (Bondada et al., 2005; Chatelet et al., 2008b). Keller et al. (2006) demonstrated this in reverse, showing that berry xylem was still capable of conducting a dye tracer back to the parent plant if the dye was introduced at the cut stylar end while the plant was transpiring. Thus, given a large enough pressure gradient, the xylem of postveraison berries retains the potential to transport water between the parent plant and the berry or vice versa. However, anatomical measurements and dye tracer studies can only be used to infer the degree to which fruit may become isolated from the parent plant. Knowledge of changes in hydraulic resistance (Rh) is required to determine whether xylem dysfunction is actually responsible for declining xylem flows reported with the progression of ripening. It is also important to differentiate between xylem flows and Rh, as these variables are sometimes confused in the literature; xylem flow rates can vary independently of Rh if water potential gradients along the pathway are altered.Previous studies examining changes in Rh associated with the development of fleshy fruit generally indicate that Rh increases during ripening but show differences in the timing and location of the increase. Some fruits develop an abscission zone in the pedicel or receptacle that is associated with vascular constriction and high Rh (Mackenzie, 1988; Lee, 1989; Van Ieperen et al., 2003). However, although some table grapes are believed to develop an abscission zone, there is no evidence of an abscission zone in wine grapes (Pratt, 1971). Tyerman et al. (2004) reported a substantial increase in Rh of grape berries after veraison, although this increase in resistance did not occur in the pedicel or receptacle but mainly in the distal section of the berries. Similarly, Malone and Andrews (2001) evaluated Rh in developing tomato fruits and stems and found that Rh increased in the fruit, but not proximal to the calyx. In apple, Lang and Ryan (1994) observed an increase in Rh at 80 d after anthesis (DAA) and also reported an increasing proportion of samples in which the xylem was completely occluded with age. Although they described these data as pedicel Rh, their measurements actually included the fruit vascular pathway; therefore, it is difficult to determine if the increase in Rh was manifested in the fruit or the pedicel.Increases in pedicel and receptacle Rh should be associated with changes in the dimensions or conductive state or xylem conduits. An increase in the Rh within the fruit may relate either to xylem dysfunction or to extravascular resistance beyond the xylem. Although they were not able to partition an increase in fruit Rh between the apoplast and symplast, Tyerman et al. (2004) suggested that the site of increased resistance may be the plasma membranes of vascular parenchyma cells separating xylem conduits and mesocarp cells rather than the xylem itself. A likely candidate driving hydraulic isolation at the cellular level is changes in plasma membrane Rh resulting from the differential expression and activity of aquaporins. Aquaporins are a family of transmembrane proteins considered to be largely responsible for the high permeability to water exhibited by plasma membranes. The regulation of Rh by aquaporins is now well documented in roots (Martre et al., 2001; McElrone et al., 2007; Vandeleur et al., 2009), and oxidative gating of aquaporins has been reported to reduce hydraulic conductivity by 90% in cells of the giant algae Chara (Henzler et al., 2004). The results of previous work suggest that aquaporins play an important role in the regulation of water movement during the development of flowers, seeds, and fruits (Maurel et al., 1995; Gao et al., 1999; Picaud et al., 2003; Shiota et al., 2006; Zhou et al., 2007). Changes in the expression of the plasma membrane intrinsic protein (PIP) PIP1 and PIP2 aquaporin gene families have been noted in ripening grapes (Picaud et al., 2003; Fei et al., 2004), although the effects of these changes on water transport (membrane conductivity) have not been documented. An increase of Rh between the mesocarp cells and the xylem within the fruit could provide a mechanism to restrict water movement between the parent plant and the berry if a large gradient in xylem tension existed between the two (Tyerman et al., 2004).While the concept of hydraulic isolation is generally accepted as part of the physiology of fleshy fruit development, we note that no studies have demonstrated an increase in Rh that is coincident with the decline in xylem flow. Additionally, measured variation in the Rh of the fruit and pedicel has not been quantitatively related to the water requirements of the fruit, taking into account water potential gradients between the fruit and the parent plant. In this study, we examined changes in the Rh of the berry, receptacle, and pedicel of Chardonnay grape over the course of fruit development. These measurements were compared against observations of xylem anatomy and aquaporin gene expression in order to investigate the hypotheses that (1) occlusion and/or disruption of xylem conduits results in the hydraulic isolation of ripening grape berries, and (2) an increase in the Rh of the berry is associated with changes in the expression of aquaporin genes in the mesocarp.  相似文献   

19.
Blossom-end rot is generally considered a calcium-related physiological disorder. The results of the previous studies show that several factors such as plant conditions can be effective on the blossom-end rot incidence. Therefore, the present study was undertaken to investigate the effect of the sink/source ratio on the incidence of the blossom-end rot of two greenhouse tomato (Solanum lycopersicum L.) cultivars: ‘Grandella’ and ‘Isabella’. To this end, four treatments were applied: saving one fruit per truss (1F), two fruits per truss (2F), three fruits per truss (3F), and no fruit pruning (control). The results showed that the tomato cultivar ‘Isabella’ was more susceptible to the blossom-end rot than ‘Grandella’. Decreasing the sink/source ratio increased the incidence of the blossom-end rot and the relative fruit growth rate. The correlation between the blossom-end rot incidence and the relative fruit growth rate showed that the fruit growth rate could be regarded as an important factor in the incidence of this disorder. Endogenous auxin and cytokinin concentrations acted as the regulators of the fruit growth rate and influenced it. Slowing down the relative growth rate by keeping proper sink/source ratio based on tomato cultivar is, therefore, an effective, cheap and healthy way to control the incidence of the blossom-end rot, especially in organic farming.  相似文献   

20.
The aim of this study is to understand the parameters regulatingcalcium ion distribution in leaves. Accumulation of ions inleaf tissue is in part dependent on import from the xylem. Thisimport via the transpiration stream is more important for ionssuch as calcium that are xylem but not phloem mobile and cannottherefore be retranslocated. Accumulation of calcium was measuredon bulk coriander leaf tissue (Coriandrum sativum L. cv. Lemon)using ion chromatography and calcium uptake was visualized usingphosphor-images of 45Ca2+. Leaves of plants grown in hydroponicshad elevated calcium in the centre of the leaf compared withthe leaf margin, while K+ was distributed homogeneously overthe leaf. This calcium was shown to be localised to the mesophyllvacuoles using EDAX. Stomatal density and evapotranspiration(water loss per unit area of leaf) were equal at inner and outersections of the leaf. Unequal ion distribution but uniformityof water loss suggested that there was a difference in the extentof uncoupling of calcium and water transport between the innerand outer leaf. Since isolated tissue from the inner and outerleaf were able to accumulate similar amounts of calcium, itis proposed that the spatial variation of leaf calcium concentrationis due to differential ion delivery to the two regions ratherthan tissue/cell-specific differences in ion uptake capacity.There was a positive correlation between whole leaf calciumconcentration and the difference in calcium concentration betweeninner and outer leaf tissue. Exposing the plants to increasedhumidity reduced transpiration and calcium delivery to the leafand abolished this spatial variation of calcium concentration.Mechanisms of calcium delivery to leaves are discussed. An understandingof calcium delivery and distribution within coriander will informstrategies to reduce the incidence of calcium-related syndromessuch as tip-burn and provides a robust model for the transportof ions and other substances in the leaf xylem. Key words: Calcium, Coriandrum sativum, distribution, ion chromatography, leaves, radioisotope, spatial variation, transpiration, uptake Received 29 August 2008; Accepted 16 October 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号