首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 641 毫秒
1.
Previous work has shown that water loss in some populations of Anolis cristatellus from the British Virgin Islands is closely tied to the conditions available on the islands they inhabit. This manifested itself in a strong correlation between habitat aridity and several water loss rate parameters. Here we report on a similar study conducted in the same locations in 1994, a year of extreme drought. We hypothesized that lizards caught at the height of the drought will experience lower rates of water loss than those measured during a normal year. Our findings show that in 1994, as in 1993, habitat aridity and water loss parameters were strongly correlated. Also as before, the Guana Island population of A. cristatellus displayed higher resistance to water loss than expected by the island's aridity. However, a striking change occurred within populations. All were at least as good at retaining water (measured as integumentary resistance to water loss, R) as in 1993, and some were over 3.5 times better. Existing evidence is insufficient to determine whether these changes were the result of phenotypic plasticity or attributable to differential mortality of nonresistant individuals.  相似文献   

2.
Phenotypic plasticity can contribute to the process of adaptive radiation by facilitating population persistence in novel environments. West Indian Anolis lizards provide a classic example of an adaptive radiation, in which divergence has occurred along two primary ecological axes: structural microhabitat and climate. Adaptive plasticity in limb morphology is hypothesized to have facilitated divergence along the structural niche axis in Anolis, but very little work has explored plasticity in physiological traits. Here, we experimentally ask whether Puerto Rican Anolis cristatellus from mesic and xeric habitats differ in desiccation rates, and whether these lizards exhibit an acclimation response to changes in relative humidity. We first present microclimatic data collected at lizard perch sites that demonstrate that abiotic conditions experienced by lizards differ between mesic and xeric habitat types. In Experiment 1, we measured desiccation rates of lizards from both habitats maintained under identical laboratory conditions. This experiment demonstrated that desiccation rates differ between populations; xeric lizards lose water more slowly than mesic lizards. In Experiment 2, lizards from each habitat were either maintained under the conditions of Experiment 1, or under extremely low relative humidity. Desiccation rates did not differ between lizards from the same habitat maintained under different treatments and xeric lizards maintained lower desiccation rates than mesic lizards within each treatment. Our results demonstrate that A. cristatellus does not exhibit an acclimation response to abrupt changes of hydric conditions, and suggest that tropical Anolis lizards might be unable to exhibit physiological plasticity in desiccation rates in response to varying climatic conditions.  相似文献   

3.
Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m?2 s?1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity.  相似文献   

4.
Faunal responses to anthropogenic habitat modification represent an important aspect of global change. In Puerto Rico, two species of arboreal lizard, Anolis cristatellus and A. stratulus, are commonly encountered in urban areas, yet seem to use the urban habitat in different ways. In this study, we quantified differences in habitat use between these two species in an urban setting. For each species, we measured habitat use and preference, and the niche space of each taxon, with respect to manmade features of the urban environment. To measure niche space of these species in an urban environment, we collected data from a total of six urban sites across four different municipalities on the island of Puerto Rico. We quantified relative abundance of both species, their habitat use, and the available habitat in the environment to measure both microhabitat preference in an urban setting, as well as niche partitioning between the two different lizards. Overall, we found that the two species utilize different portions of the urban habitat. Anolis stratulus tends to use more “natural” portions of the urban environment (i.e., trees and other cultivated vegetation), whereas A. cristatellus more frequently uses anthropogenic structures. We also found that aspects of habitat discrimination in urban areas mirror a pattern measured in prior studies for forested sites in which A. stratulus was found to perch higher than A. cristatellus and preferred lower temperatures and greater canopy cover. In our study, we found that the multivariate niche space occupied by A. stratulus did not differ from the available niche space in natural portions of the urban environment and in turn represented a subset of the niche space occupied by A. cristatellus. The unique niche space occupied by A. cristatellus corresponds to manmade aspects of the urban environment generally not utilized by A. stratulus. Our results demonstrate that some species are merely tolerant of urbanization while others utilize urban habitats in novel ways. This finding has implications for long‐term persistence in urban habitats and suggests that loss of natural habitat elements may lead to nonrandom species extirpations as urbanization intensifies.  相似文献   

5.
Summary Respiratory and cutaneous evaporative water losses were measured in dried air from 5 xantusiid lizard species to determine whether adaptations for water conservation were present in one or both components. These species represent the range of arid to mesic habitats occupied by the Xantusiidae. The respiratory proportion of evaporative water loss ranged from 20–50% and did not show consistent patterns of temperature dependence or interspecific differences. However, respiratory water loss expressed as mg H2O per ml O2 consumed and cutaneous water loss (mg H2O· cm–2·h–1) exibited parallel correspondence to habitat aridity. Adaptations for reducing water loss from the skin involved an increased skin resistance to water flux while reduction of respiratory water loss was probably the result of reduced convection requirements for respiratory gas exchange.Abbreviations EWL evaporative water loss - RWL respiratory water loss - CWL cutaneous water loss  相似文献   

6.
Several honey bee (Apis mellifera) subspecies are in danger of local extinction because their feral population have almost completely disappeared. An important threat to the feral populations of bees is loss of habitat and loss of woodlands. In many places the only habitat suitable for honey bee nesting are rows of trees along roadsides. We studied a feral population of honey bees inhabiting avenues in northern Poland. We inspected 142 km of avenues and found 45 feral colonies. The estimated density of feral population inhabiting the avenues was 0.10 nest km?2. Honey bees preferred to build their nests in trees with a thick trunk and a somewhat weak state of health. There was no strong preference of bees to any species of trees. We stress the importance of protection of existing avenues and creating new ones. This can provide suitable habitat not only for honey bees but also for other endangered species.  相似文献   

7.
The Pucciniomycete fungus Hemileia vastatrix causes leaf rust on coffee trees. The pathogen is responsible for considerable yield losses in susceptible coffee cultivars if appropriate management strategies are not implemented. Rapid spread and epidemics of rust fungi are usually associated with the emergence of new races of the pathogen that overcome resistance or with the emergence of more aggressive populations of the pathogen. In Brazil, coffee production is dominated by susceptible cultivars of Coffea arabica and Coffea canephora. We assessed aggressiveness in 46 populations of Hvastatrix from Minas Gerais and Espírito Santo, two of the most important coffee‐producing states in Brazil. We observed a significant difference in the incubation period between the populations from Minas Gerais and Espírito Santo when 183 single‐pustule isolates were inoculated onto Catuaí Vermelho IAC 44, a susceptible C. arabica cultivar. Variation in aggressiveness components was observed between and within localities. Isolates with longer incubation periods also tended to have longer latent periods, although there was only a low correlation between these two aggressiveness components (r2 = 0.34, P = 2.2 × 10?16). Low‐sporulating isolates also had significantly longer incubation and latent periods. The H. vastatrix population from Minas Gerais and Espírito Santo is structured by the formation of groups of individuals with differential level of aggressiveness. Our results indicate that the variation in aggressiveness of the Brazilian H. vastatrix population may be associated with the geographic coffee‐producing areas.  相似文献   

8.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

9.
In the Pacific north‐west, the Cascade Mountain Range blocks much of the precipitation and maritime influence of the Pacific Ocean, resulting in distinct climates east and west of the mountains. The current study aimed to investigate relationships between water storage and transport properties in populations of Douglas‐fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) adapted to both climates. Sapwood thickness, capacitance, vulnerability to embolism, and axial and radial conductivity were measured on samples collected from trunks of mature trees. The sapwood of ponderosa pine was three to four times thicker than Douglas‐fir. Radial conductivity was higher in west‐side populations of both species, but axial conductivity was higher in the east‐side populations and in Douglas‐fir. Eastern populations of both species had sapwood that was more vulnerable to embolism than west‐side populations. Sapwood capacitance was similar between species, but was about twice as great in east‐side populations (580 kg m?3 MPa?1) as in west‐side populations (274 kg m?3 MPa?1). Capacitance was positively correlated with both mean embolism pressure and axial conductivity across species and populations, suggesting that coordinated adjustments in xylem efficiency, safety and water storage capacity may serve to avoid embolism along a gradient of increasing aridity.  相似文献   

10.
Habitat fragmentation has often been implicated in the decline of many species. For habitat specialists and/or sedentary species, loss of habitat can result in population isolation and lead to negative genetic effects. However, factors other than fragmentation can often be important and also need to be considered when assessing the genetic structure of a species. We genotyped individuals from 13 populations of the cooperatively breeding Brown‐headed Nuthatch Sitta pusilla in Florida to test three alternative hypotheses regarding the effects that habitat fragmentation might have on genetic structure. A map of potential habitat developed from recent satellite imagery suggested that Brown‐headed Nuthatch populations in southern Florida occupied smaller and more isolated habitat patches (i.e. were more fragmented) than populations in northern Florida. We also genotyped individuals from a small, isolated Brown‐headed Nuthatch population on Grand Bahama Island. We found that populations associated with more fragmented habitat in southern Florida had lower allelic richness than populations in northern Florida (P = 0.02), although there were no differences in heterozygosity. Although pairwise estimates of FST were low overall, values among southern populations were generally higher than northern populations. Population assignment tests identified K = 3 clusters corresponding to a northern cluster, a southern cluster and a unique population in southeast Florida; using sampling localities as prior information revealed K = 7 clusters, with greater structure only among southern Florida populations. The Bahamas population showed moderate to high differentiation compared with Florida populations. Overall, our results suggest that fragmentation could affect gene flow in Brown‐headed Nuthatch populations and is likely to become more pronounced over time.  相似文献   

11.
Patterns of variation at 27 allozyme loci were investigated in the endangered endemic plantMegaleranthis saniculifolia. Levels of allozyme variation (A = 1.47,P = 40%,He = 0.088) were also compared with other endemic plant species. Genetic divergence between populations was very high (G st = 0.271 ), with moderate to high interpopulation differentiation, which probably arose through historical bottlenecks in a landscape of habitat fragmentation and/or human influence. The percentage of polymorphic loci, heterozygosity, and mean number of alleles per locus were positively related to population size, probably due to the stochastic loss of rare alleles in the smaller populations. Individuals in the small and marginal populations (TB, KD, and CJ) showed higher proportions of fixed loci. These ecologically marginal populations were typically more distant from the nearest neighboring population and were more genetically distinct from one another. The genetic structure of the current population ofM. saniculifolia is probably the result of local extinctions of intervening populations. This, in turn, is due to the Pleistocene climatic change and increased habitat destruction. A positive association appears to exist between genetic diversity and population size. Although these small population sizes are more sensitive to stochastic events, securing a certain number of individuals from the three larger populations (SB, JB, and TG) could be accomplished as part of a conservation strategy. In addition, it is important to prioritize populations in different regions in order to limit population declines caused by large-scale environmental catastrophes.  相似文献   

12.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   

13.
Capsule: The Dupont’s Lark Chersophilus duponti in Iberia has relatively high breeding success in both core and fragmented habitats, so population declines are more likely to be the result of low juvenile or adult survival.

Aims: To measure important aspects of the reproductive biology of one of the most endangered and least known larks: the Dupont’s Lark C. duponti.

Methods: We monitored 36 nests in 2 Spanish shrub-steppes, one holding one of the largest European populations (250 pairs) and one composed by fragmented habitat patches holding a smaller population (50 pairs).

Results: The breeding season went from late-March to early July. Overall mean (±sd) clutch size was 3.47?±?0.56, and the number of fledglings per successful nest was 3.0?±?1.15. Mean nestling period was short (8.2 days). Nests showed similar daily survival rate during the incubation period (0.9750?±?0.0110) as during the nestling period (0.9545?±?0.0168), with a mean breeding success of 50%. Predation was the main cause of complete nest failure (83.3% of failed nests in both localities).

Conclusion: Breeding parameters did show no significant variation between populations. Breeding success in both sites was generally higher than recorded in previous studies of this and most other lark species, which suggests that breeding success does not compromise long-term viability of these populations. The decline of the studied populations should be explained by other causes, such as a general decrease in habitat quality, habitat loss or habitat fragmentation.  相似文献   

14.
Abstract: Direct and indirect effects of industrial development have contributed, in part, to the threatened status of boreal ecotype caribou (Rangifer tarandus caribou) in Alberta and Canada. Our goal was to develop a model that would allow managers to identify landscape-scale targets for industrial development, while ensuring functional habitat for sustainable caribou populations. We examined the relationship between functional habitat loss resulting from cumulative effects of natural and anthropogenic disturbance, and the rate of population change (Λ) for 6 populations of boreal caribou in Alberta, Canada. We defined functional habitat loss according to 2 variables for which we had a priori reasons to suspect causative associations with Λ: 1) percentage area of caribou range within 250 m of anthropogenic footprint, and 2) percentage of caribou range disturbed by wildfire within the last 50 years. Multiple regression coefficients for both independent variables indicated significant effects on Λ. The 2-predictor model explained 96% (R2) of observed variation in Λ among population units (F2,3 = 35.2, P = 0.008). The model may be used to evaluate plans for industrial development in relation to predicted wildfire rates and goals for caribou population growth rates.  相似文献   

15.
Accounting for water stress‐induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species‐specific relationships between probability of mortality (Pm) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (Ws,z) and reference evapotranspiration (ETr,z) at each field plot. The models additionally tested for interactions between the water‐balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross‐validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water‐balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole‐plant, leaf‐specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr?1 in 1951 to 2.0% yr?1 in 2014 (a net change of 0.9 ± 0.3% yr?1). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak‐to‐moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This ‘learn‐as‐we‐go’ approach – defined by sampling rare drought events as they continue to intensify – will help to constrain the hydraulic limits of dominant tree species and the viability of boreal and temperate forest biomes under continued climate change.  相似文献   

16.
Habitat requirements and landscape features can exert strong influences on the population structure of organisms. For aquatic organisms in particular, hydrologic requirements can dictate the extent of available habitat, and thus the degree of genetic connectivity among populations. We used a landscape genetics approach to evaluate hypotheses regarding the influence of landscape features on connectivity among populations of the giant water bug Abedus herberti (Hemiptera: Belostomatidae). Abedus herberti is restricted to naturally‐fragmented, perennial stream habitats in arid regions of North America. This species is exceptional because it is flightless at all life stages. Thus, we hypothesized a high degree of population genetic structure in A. herberti due to hydrologic constraints on habitat and low dispersal ability of the organism. A total of 617 individuals were sampled from 20 populations across southeastern Arizona, USA and genotyped at 10 microsatellite loci. We used a Bayesian clustering method to delineate genetic groups among populations. To determine which of six landscape variables (representing hypotheses of landscape‐level connectivity) has the strongest association with genetic connectivity in A. herberti, we used information‐theoretic model selection. Strong population structure was evident among A. herberti populations, even at small spatial scales. At a larger scale, A. herberti populations were hierarchically structured across the study region, with groups of related populations generally occurring in the same mountain range, rather than in the same major watershed. Surprisingly, stream network connectivity was not important for explaining among‐population patterns. Only the Curvature landscape variable was identified as having an association with genetic connectivity in A. herberti. The Curvature variable hypothesizes that gene flow tends to occur where local topography is concave, such as within stream drainages and dry gullies. Thus, our results suggest that population connectivity may depend on the shape of local overland topography rather than direct connectivity within stream drainage networks.  相似文献   

17.
Migratory animals present a unique challenge for understanding the consequences of habitat loss on population dynamics because individuals are typically distributed over a series of interconnected breeding and non‐breeding sites (termed migratory network). Using replicated breeding and non‐breeding populations of Drosophila melanogaster and a mathematical model, we investigated three hypotheses to explain how habitat loss influenced the dynamics of populations in networks with different degrees of connectivity between breeding and non‐breeding seasons. We found that habitat loss increased the degree of connectivity in the network and influenced population size at sites that were not directly connected to the site where habitat loss occurred. However, connected networks only buffered global population declines at high levels of habitat loss. Our results demonstrate why knowledge of the patterns of connectivity across a species range is critical for predicting the effects of environmental change and provide empirical evidence for why connected migratory networks are commonly found in nature.  相似文献   

18.
Kramer A  Sarnelle O 《Oecologia》2008,157(4):561-569
The Allee effect can result in a negative population growth rate at low population density. Consequently, populations below a minimum (critical) density are unlikely to persist. A lower limit on population size should constrain the loss of genetic variability due to genetic drift during population bottlenecks or founder events. We explored this phenomenon by modeling changes in genetic variability and differentiation during simulated bottlenecks of the alpine copepod, Hesperodiaptomus shoshone. Lake surveys, whole-lake re-introduction experiments and model calculations all indicate that H. shoshone should be unlikely to establish or persist at densities less than 0.5–5 individuals m−3. We estimated the corresponding range in minimum effective population size using the distribution of habitat (lake) sizes in nature and used these values to model the expected heterozygosity, allelic richness and genetic differentiation resulting from population bottlenecks. We found that during realistic bottlenecks or founder events, >90% of H. shoshone populations in the Sierra Nevada may be resistant to significant changes in heterozygosity or genetic distance, and 70–75% of populations may lose <10% of allelic richness. We suggest that ecological constraints on minimum population size be considered when using genetic markers to estimate historical population dynamics.  相似文献   

19.
Habitat size, quality and isolation determine the genetic structure and diversity of populations and may influence their evolutionary potential and vulnerability to stochastic events. Small and isolated populations are subject to strong genetic drift and can lose much of their genetic diversity due to stochastic fixation and loss of alleles. The mountain white‐eye Zosterops poliogaster, a cloud forest bird species, is exclusively found in the high mountains of East Africa. We analysed 13 polymorphic microsatellites for 213 individuals of this species that were sampled at different points in time in three mountain massifs differing in habitat size, isolation and habitat degradation. We analysed the genetic differentiation among mountain populations and estimated the effective population sizes. Our results indicate three mountain‐specific genetic clusters. Time cohorts did not show genetic divergences, suggesting that populations are large enough to prevent strong drift effects. Effective population sizes were higher in larger and geographically interconnected habitat patches. Our findings underline the relevance of ecological barriers even for mobile species and show the importance of investigating different estimators of population size, including both approaches based on single and multiple time‐points of sampling, for the inference of the demographic status of a population. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 828–836.  相似文献   

20.
For declining wild populations, a critical aspect of effective conservation is understanding when and where the causes of decline occur. The primary drivers of decline in migratory and seasonal populations can often be attributed to a specific period of the year. However, generic, broadly applicable indicators of these season‐specific drivers of population decline remain elusive. We used a multi‐generation experiment to investigate whether habitat loss in either the breeding or non‐breeding period generated distinct signatures of population decline. When breeding habitat was reduced, population size remained relatively stable for several generations, before declining precipitously. When non‐breeding habitat was reduced, between‐season variation in population counts increased relative to control populations, and non‐breeding population size declined steadily. Changes in seasonal vital rates and other indicators were predicted by the season in which habitat loss treatment occurred. Per capita reproductive output increased when non‐breeding habitat was reduced and decreased with breeding habitat reduction, whereas per capita non‐breeding survival showed the opposite trends. Our results reveal how simple signals inherent in counts and demographics of declining populations can indicate which period of the annual cycle is driving declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号