首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that a sex difference in the opportunity for selection results in sex differences in the strength of random genetic drift and thus creates different patterns of genetic diversity for maternally and paternally inherited haploid genes. We derive the effective population size Ne for a male-limited or female-limited haploid gene in terms of I, the "opportunity for selection" or the variance in relative fitness. Because the variance in relative fitness of males can be an order of magnitude larger than that of females, the Ne is much smaller for males than it is for females. We derive both nonequilibrium and equilibrium expressions for F(ST) in terms of I and show how the portion of I owing to sexual selection, Imates, that is, the variation among males in mate numbers, is a simple function of the F's for cytoplasmic (female inherited) and Y-linked (male inherited) genes. Because multiple, transgenerational data are lacking to apply the nonequilibrium expression, we apply only the equilibrium model to published data on Y chromosome and mitochondrial sequence divergence in Homo sapiens to quantify the opportunity for sexual selection. The estimate suggests that sexual selection in humans represents a minimum of 54.8% of total selection, supporting Darwin's proposal that sexual selection has played a significant role in human evolution and the recent proposal regarding a shift from polygamy to monogamy in humans.  相似文献   

2.
Elucidating the nature of genetic variation underlying both sexually selected traits and the fitness components of sexual selection is essential to understanding the broader consequences of sexual selection as an evolutionary process. To date, there have been relatively few attempts to connect the genetic variance in sexually selected traits with segregating DNA sequence polymorphisms. We set out to address this in a well‐characterized sexual selection system – the cuticular hydrocarbons (CHCs) of Drosophila serrata – using an indirect association study design that allowed simultaneous estimation of the genetic variance in CHCs, sexual fitness and single nucleotide polymorphism (SNP) effects in an outbred population. We cloned and sequenced an ortholog of the D. melanogaster desaturase 2 gene, previously shown to affect CHC biosynthesis in D. melanogaster, and associated 36 SNPs with minor allele frequencies > 0.02 with variance in CHCs and sexual fitness. Three SNPs had significant multivariate associations with CHC phenotype (q‐value < 0.05). At these loci, minor alleles had multivariate effects on CHCs that were weakly associated with the multivariate direction of sexual selection operating on these traits. Two of these SNPs had pleiotropic associations with male mating success, suggesting these variants may underlie responses to sexual selection due to this locus. There were 15 significant male mating success associations (q‐value < 0.1), and interestingly, we detected a nonrandom pattern in the relationship between allele frequency and direction of effect on male mating success. The minor‐frequency allele usually reduced male mating success, suggesting a positive association between male mating success and total fitness at this locus.  相似文献   

3.
It is widely established that proteins involved in reproduction diverge between species more quickly than other proteins. For male sperm proteins, rapid divergence is believed to be caused by postcopulatory sexual selection and/or sexual conflict. Here, we derive the expected levels of gene diversity within populations and divergence between them for male sperm protein genes evolving by postcopulatory, prezygotic fertility competition, i.e. the function imputed for some sperm and seminal fluid genes. We find that, at the mutation‐selection equilibrium, both gene diversity within species and divergence between them are elevated relative to genes with similar selection coefficients expressed by both sexes. We show that their expected level of diversity is a function of the harmonic mean number of mates per female, which affects the strength of fertility selection stemming from male–male sperm competition. Our predictions provide a null hypothesis for distinguishing between other selective hypotheses accounting for the rapid evolution of male reproductive genes.  相似文献   

4.
Recent documentations of sexually antagonistic genetic variation in fitness have spurred an interest in the mechanisms that may act to maintain such variation in natural populations. Using individual-based simulations, I show that positive assortative mating by fitness increases the amount of sexually antagonistic genetic variance in fitness, primarily by elevating the equilibrium frequency of heterozygotes, over most of the range of sex-specific selection and dominance. Further, although the effects of assortative mating by fitness on the protection conditions of polymorphism in sexually antagonistic loci were relatively minor, it widens the protection conditions under most reasonable scenarios (e.g., under heterozygote superiority when fitness is averaged across the sexes) but can also somewhat narrow the protection conditions under other circumstances. The near-ubiquity of assortative mating in nature suggests that it may contribute to upholding standing sexually antagonistic genetic variation in fitness.  相似文献   

5.
A Sánchez-Gracia  J Rozas 《Heredity》2011,106(1):191-201
Chromosomal inversion polymorphism play a major role in the evolutionary dynamics of populations and species because of their effects on the patterns of genetic variability in the genomic regions within inversions. Though there is compelling evidence for the adaptive character of chromosomal polymorphisms, the mechanisms responsible for their maintenance in natural populations is not fully understood. For this type of analysis, Drosophila subobscura is a good model species as it has a rich and extensively studied chromosomal inversion polymorphism system. Here, we examine the patterns of DNA variation in two natural populations segregating for chromosomal arrangements that differentially affect the surveyed genomic region; in particular, we analyse both nucleotide substitutions and insertion/deletion variations in the genomic region encompassing the odorant-binding protein genes Obp83a and Obp83b (Obp83 region). We show that the two main gene arrangements are genetically differentiated, but are consistent with a monophyletic origin of inversions. Nevertheless, these arrangements interchange some genetic information, likely by gene conversion. We also find that the frequency spectrum-based tests indicate that the pattern of nucleotide variation is not at equilibrium; this feature probably reflects the rapid increase in the frequency of the new gene arrangement promoted by positive selection (that is an adaptive change). Furthermore, a comparative analysis of polymorphism and divergence patterns reveals a relaxation of the functional constraints at the Obp83b gene, which might be associated with particular ecological or demographic features of the Canary island endemic species D. guanche  相似文献   

6.
7.
We use population genetic models to investigate the cooperative and conflicting synergistic fitness effects between genes from the nucleus and the mitochondrion. By varying fitness parameters, we examine the scope for conflict relative to cooperation among genomes and the utility of the “gene's eye view” analytical approach, which is based on the marginal average fitness of specific alleles. Because sexual conflict can maintain polymorphism of mitochondrial haplotypes, we can explore two types of evolutionary conflict (genomic and sexual) with one epistatic model. We find that the nuclear genetic architecture (autosomal, X‐linked, or Z‐linked) and the mating system change the regions of parameter space corresponding to the evolution by sexual and genomic conflict. For all models, regardless of conflict or cooperation, we find that population mean fitness increases monotonically as evolution proceeds. Moreover, we find that the process of gene frequency change with positive, synergistic fitnesses is self‐accelerating, as the success of an allele in one genome or in one sex increases the frequency of the interacting allele upon which its success depends. This results in runaway evolutionary dynamics caused by the positive intergenomic associations generated by selection. An inbreeding mating system tends to further accelerate these runaway dynamics because it maintains favorable host–symbiont or male–female gene combinations. In contrast, where conflict predominates, the success of an allele in one genome or in one sex diminishes the frequency of the corresponding allele in the other, resulting in considerably slower evolutionary dynamics. The rate of change of mean fitness is also much faster with positive, synergistic fitnesses and much slower where conflict is predominant. Consequently, selection rapidly fixes cooperative gene combinations, while leaving behind a slowing evolving residue of conflicting gene combinations at mutation–selection balance. We discuss how an emphasis on marginal fitness averages may obscure the interdependence of allelic fitness across genomes, making the evolutionary trajectories appear independent of one another when they are not.  相似文献   

8.
Migration tends to oppose the effects of divergent natural selection among populations. Numerous theoretical and empirical studies have demonstrated that this migration-selection balance constrains genetic divergence among populations. In contrast, relatively few studies have examined immigration's effects on fitness and natural selection within recipient populations. By constraining local adaptation, migration can lead to reduced fitness, known as a "migration load," which in turn causes persistent natural selection. We develop a simple two-island model of migration-selection balance that, although very general, also reflects the natural history of Timema cristinae walking-stick insects that inhabit two host plant species that favor different cryptic color patterns. We derive theoretical predictions about how migration rates affect the level of maladaptation within populations (measured as the frequency of less-cryptic color-pattern morphs), which in turn determines the selection differential (the within-generation morph frequency change). Using data on color morph frequencies from 25 natural populations, we confirm previous results showing that maladaptation is higher in populations receiving more immigrants. We then present novel evidence that this increased maladaptation leads to larger selection differentials, consistent with our model. Our results provide comparative evidence that immigration elevates the variance in fitness, which in turn leads to larger selection differentials, consistent with Fisher's Theorem of Natural Selection. However, we also find evidence that recurrent adult migration between parapatric populations may tend to obscure the effects of selection.  相似文献   

9.
The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous–homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.  相似文献   

10.
Female mate choice can result in direct benefits to the female or indirect benefits through her offspring. Females can increase their fitness by mating with males whose genes encode increased survivorship and reproductive output. Alternatively, male investment in enhanced mating success may come at the cost of reduced investment in offspring fitness. Here, we measure male mating success in a mating arena that allows for male–male, male–female and female–female interactions in Drosophila melanogaster. We then use isofemale line population measurements to correlate male mating success with sperm competitive ability, the number of offspring produced and the indirect benefits of the number of offspring produced by daughters and sons. We find that males from populations that gain more copulations do not increase female fitness through increased offspring production, nor do these males fare better in sperm competition. Instead, we find that these populations have a reduced reproductive output of sons, indicating a potential reproductive trade‐off between male mating success and offspring quality.  相似文献   

11.
In hermaphrodites, pleiotropic genetic trade‐offs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. Although an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self‐fertilization, and population size on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self‐fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female‐beneficial alleles, and restricts invasion criteria for male‐beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes.”  相似文献   

12.
In a variety of animal taxa, proteins involved in reproduction evolve more rapidly than nonreproductive proteins. Most studies of reproductive protein evolution, however, focus on divergence between species, and little is known about differentiation among populations within a species. Here we investigate the molecular population genetics of the protein ZP3 within two Peromyscus species. ZP3 is an egg coat protein involved in primary binding of egg and sperm and is essential for fertilization. We find that amino acid polymorphism in the sperm-combining region of ZP3 is high relative to silent polymorphism in both species of Peromyscus . In addition, while there is geographical structure at a mitochondrial gene ( Cytb ), a nuclear gene ( Lcat ) and eight microsatellite loci, we find no evidence for geographical structure at Zp3 in Peromyscus truei . These patterns are consistent with the maintenance of ZP3 alleles by balancing selection, possibly due to sexual conflict or pathogen resistance. However, we do not find evidence that reinforcement promotes ZP3 diversification; allelic variation in P. truei is similar among populations, including populations allopatric and sympatric with sibling species. In fact, most alleles are present in all populations sampled across P. truei's range. While additional data are needed to identify the precise evolutionary forces responsible for sequence variation in ZP3, our results suggest that in Peromyscus , selection to maintain divergent alleles within species contributes to the pattern of rapid amino acid substitution observed among species.  相似文献   

13.
Population differentiation often reflects a balance between divergent natural selection and the opportunity for homogenizing gene flow to erode the effects of selection. However, during ecological speciation, trait divergence results in reproductive isolation and becomes a cause, rather than a consequence, of reductions in gene flow. To assess both the causes and the reproductive consequences of morphological differentiation, we examined morphological divergence and sexual isolation among 17 populations of Timema cristinae walking-sticks. Individuals from populations adapted to using Adenostoma as a host plant tended to exhibit smaller overall body size, wide heads, and short legs relative to individuals using Ceonothus as a host. However, there was also significant variation in morphology among populations within host-plant species. Mean trait values for each single population could be reliably predicted based upon host-plant used and the potential for homogenizing gene flow, inferred from the size of the neighboring population using the alternate host and mitochondrial DNA estimates of gene flow. Morphology did not influence the probability of copulation in between-population mating trials. Thus, morphological divergence is facilitated by reductions in gene flow, but does not cause reductions in gene flow via the evolution of sexual isolation. Combined with rearing data indicating that size and shape have a partial genetic basis, evidence for parallel origins of the host-associated forms, and inferences from functional morphology, these results indicate that morphological divergence in T. cristinae reflects a balance between the effects of host-specific natural selection and gene flow. Our findings illustrate how data on mating preferences can help determine the causal associations between trait divergence and levels of gene flow.  相似文献   

14.
Whether species exhibit significant heritable variation in fitness is central for sexual selection. According to good genes models there must be genetic variation in males leading to variation in offspring fitness if females are to obtain genetic benefits from exercising mate preferences, or by mating multiply. However, sexual selection based on genetic benefits is controversial, and there is limited unambiguous support for the notion that choosy or polyandrous females can increase the chances of producing offspring with high viability. Here we examine the levels of additive genetic variance in two fitness components in the dung beetle Onthophagus taurus. We found significant sire effects on egg-to-adult viability and on son, but not daughter, survival to sexual maturity, as well as moderate coefficients of additive variance in these traits. Moreover, we do not find evidence for sexual antagonism influencing genetic variation for fitness. Our results are consistent with good genes sexual selection, and suggest that both pre- and postcopulatory mate choice, and male competition could provide indirect benefits to females.  相似文献   

15.
Reinforcement and divergence under assortative mating   总被引:5,自引:0,他引:5  
Traits that cause assortative mating such as the flowering time in plants and body size in animals can produce reproductive isolation between hybridizing populations. Can selection against unfit hybrids cause two populations to diverge in their mean values for these kinds of traits? Here I present a haploid analytical model of one population that receives gene flow from another. The partial pre-zygotic isolation between the two populations is caused by assortative mating for a trait that is influenced by any number of genes with additive effects. The post-zygotic isolation is caused by selection against genetic incompatibilities that can involve any form of selection on individual genes and gene combinations (epistasis). The analysis assumes that the introgression rate and selection coefficients are small. The results show that the assortment trait mean will not diverge from the immigrants unless there is direct selection on the trait favouring it to do so or there are genes of very large effect. The amount of divergence at equilibrium is determined by a balance between direct selection on the assortment trait and introgression from the other population. Additional selection against hybrid genetic incompatibilities reduces the effective migration rate and allows greater divergence. The role of assortment in speciation is discussed in the light of these results.  相似文献   

16.
Dey A  Jeon Y  Wang GX  Cutter AD 《Genetics》2012,191(4):1257-1269
Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus-multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F(2) hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system.  相似文献   

17.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

18.
Diverse geographical modes and mechanisms of speciation are known, and individual speciation genes have now been identified. Despite this progress, genome-wide outcomes of different evolutionary processes during speciation are less understood. Here, we integrate ecological and spatial information, mating trials, transplantation data and analysis of 86 130 single nucleotide polymorphisms (SNPs) in eight populations (28 pairwise comparisons) of Timema cristinae stick insects to test the effects of different factors on genomic divergence in a system undergoing ecological speciation. We find patterns consistent with effects of numerous factors, including geographical distance, gene flow, divergence in host plant use and climate, and selection against maladaptive hybridization (i.e. reinforcement). For example, the number of highly differentiated ‘outlier loci’, allele-frequency clines and the overall distribution of genomic differentiation were recognizably affected by these factors. Although host use has strong effects on phenotypic divergence and reproductive isolation, its effects on genomic divergence were subtler and other factors had pronounced effects. The results demonstrate how genomic data can provide new insights into speciation and how genomic divergence can be complex, yet predictable. Future work could adopt experimental, mapping and functional approaches to directly test which genetic regions are affected by selection and determine their physical location in the genome.  相似文献   

19.
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamics incorporating both survival and reproduction, we demonstrate that natural and sexual selection produce distinctive signatures of MHC allelic diversity with critical implications for understanding host–pathogen dynamics. While natural selection produces the Red Queen dynamics characteristic of host–parasite interactions, disassortative mating stabilizes allele frequencies, damping major fluctuations in dominant alleles and protecting functional variants against drift. This subtle difference generates a complex interaction between MHC allelic diversity and population size. In small populations, the stabilizing effects of sexual selection moderate the effects of drift, whereas pathogen-mediated selection accelerates the loss of functionally important genetic diversity. Natural selection enhances MHC allelic variation in larger populations, with the highest levels of diversity generated by the combined action of pathogen-mediated selection and disassortative mating. MHC-based sexual selection may help to explain how functionally important genetic variation can be maintained in populations of conservation concern.  相似文献   

20.
Abstract The evolution of premating isolation after secondary contact is primarily considered in the guise of reinforcement, which relies on low hybrid fitness as the driving force for mating preference divergence. Here I consider two additional forces that may play a substantial role in the adaptive evolution of premating isolation, direct selection on preferences and indirect selection against postmating, prezygotic incompatibilities. First, I argue that a combination of ecological character displacement and sensory bias can cause direct selection on preferences that results in the pattern of reproductive character displacement. Both analytical and numerical methods are then used to demonstrate that, as expected from work in single populations, such direct selection will easily overwhelm indirect selection due to low hybrid fitness as the primary determinant of preference evolution. Second, postmating, prezygotic incompatibilities are presented as a driving force in the evolution of premating isolation. Two classes of these mechanisms, those increasing female mortality after mating but before producing offspring and those reducing female fertility, are shown to be identical in their effects on preference divergence. Analytical and numerical techniques are then used to demonstrate that postmating, prezygotic factors may place strong selection on preference divergence. These selective forces are shown to be comparable if not greater than those produced by the low fitness of hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号