首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gramicidin A is a linear polypeptide antibiotic that facilitates the diffusion of monovalent cations across lipid bilayer membranes by forming channels. It has been proposed that the conducting channel is a dimer which is in equilibrium with nonconducting monomers in the membrane. To directly test this model in several independent ways, we have prepared and purified a series of gramicidin C derivatives. All of these derivatives are fully active analogs of gramicidin A, and each derivative has a useful chromophore esterified to the phenolic hydroxyl of tyrosine #11. Simultaneous conductance and fluorescence measurements on planar lipid bi-layer membranes containing dansyl gramicidin C yielded four conclusions: (1) A plot of the logarithm of the membrane conductance versus the logarithm of the membrane fluorescence had a slope of 2.0 ± 0.3, over a concentration range for which nearly all the gramicidin was monomeric. Hence, the active channel is a dimer of the nonconducting species. (2) In a membrane in which nearly all of the gramicidin was dimeric, the number of channels was approximately equal to the number of dimers. Thus, most dimers are active channels and so it should be feasible to carry out spectroscopic studies of the conformation of the transmembrane channel. (3) The association constant for dimerization is more than 1,000-fold larger in a glycerolester membrane with 26 Å-hydrocarbon thickness than in a 47 Å-glycerolester membrane. The dimerization constant in a 48 Å-phosphatidyl choline membrane was 200 times larger than in a 47 Å-glycerolester membrane, showing that it depends on the type of lipid as well as on the thickness of the hydrocarbon core. (4) We were readily able to detect 10?14 mole cm?2 of dansyl gramicidin C in a bilayer membrane, which corresponds to 60 fluorescent molecules per square μm. The fluorescent techniques described here should be sufficiently sensitive for fluorescence studies of reconstituted gates and receptors in planar bilayer membranes. An alternative method of determining the number of molecules of gramicidin in the channel is to measure the fraction of hybrid channels present in a mixture of 2 chemically different gramicidins. The single-channel conductance of p-phenylazo-benzene-sulfonyl ester gramicidin C (PABS gramicidin C) was found to be 0.68 that of gramicidin A. In membranes containing a mixture of these 2 gramicidins, a hybrid channel was evident in addition to 2 pure channels. The hybrid channel conductance was 0.82 that of gramicidin A. Fluorescence energy transfer from dansyl gramicidin C to diethylamino-phenylazobenzene-sulfonyl ester gramicidin C (DPBS gramicidin C), provided an independent way to measure the fraction of hybrid channels on liposomes. For both techniques the fraction of hybrid channels was found to be 2ad where a2 and d2 were the fractions of the 2 kinds of pure channels. This result strongly supports a dimer channel and the hybrid data excludes the possibility of a tetramer channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes. The various models which have been proposed for the conformation of the gramicidin transmembrane channel are briefly discussed.  相似文献   

2.
3.
B Roux 《Biophysical journal》1996,71(6):3177-3185
The valence selectivity of the gramicidin channel is examined using computer simulations based on atomic models. The channel interior is modeled using a gramicidin-like periodic poly (L,D)-alanine beta-helix. Free energy perturbation calculations are performed to obtain the relative affinity of K+ and Cl- for the channel. It is observed that the interior of the gramicidin channel provides an energetically favorable interaction site for a cation but not for an anion. Relative to solvation in bulk water, the carbonyl CO oxygens can provide a favorable interaction to stabilize K+, whereas the amide NH hydrogens are much less effective in stabilizing Cl-. The results of the calculations demonstrate that, as a consequence of the structural asymmetry of the backbone charge distribution, a K+ cation can partition spontaneously from bulk water to the interior of the gramicidin channel, whereas a Cl- anion cannot.  相似文献   

4.
The influence of acylation on the conductance, average duration, and channel-forming potency of channels formed by gramicidin A analogues was investigated using single-channel and multichannel techniques. Lauroyl-, myristoyl-, palmitoyl-, stearoyl-, and oleoylgramicidin A were prepared by covalent coupling of that fatty acid to the C-terminal ethanolamine group. Acylation of gramicidin A does not affect the single-channel conductance or the minichannel frequency in diphytanoylphosphatidylcholine/n-decane black lipid membranes. However, the average duration of all acylgramicidin channels was increased approximately 5-fold as compared to unmodified gramicidin A, which has a duration of 0.9 s at 200-mV applied potential. Somewhat surprisingly the rate of channel formation of the acylgramicidins is decreased relative to gramicidin A: lauroyl- and stearoylgramicidin are approximately 200 times less effective in channel formation as compared to gramicidin A. We conclude that channels formed by the acylgramicidins and by gramicidin A are structurally and conformationally equivalent.  相似文献   

5.
Lipid metabolites, free fatty acids and lysophospholipids, modify the function of membrane proteins including ion channels. Such alterations can occur through signal transduction pathways, but may also result from "direct" effects of the metabolite on the protein. To investigate possible mechanisms for such direct effects, we examined the alterations of gramicidin channel function by lysophospholipids (LPLs): lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), and lysophosphatidylinositol (LPI). The experiments were done on planar bilayers formed by diphytanoylphosphatidylcholine in n-decane a system where receptor- mediated effects can be excluded. At aqueous concentrations below the critical micelle concentration (CMC), LPLs can increase the dimerization constant for membrane-bound gramicidin up to 500-fold (at 2 microM). The relative potency increases as a function of the size of the polar head group, but does not seem to vary as a function of head group charge. The increased dimerization constant results primarily from an increase in the rate constant for channel formation, which can increase more than 100-fold (in the presence of LPC and LPI), whereas the channel dissociation rate constant decreases only about fivefold. The LPL effect cannot be ascribed to an increased membrane fluidity, which would give rise to an increased channel dissociation rate constant. The ability of LPC to decrease the channel dissociation rate constant varies as a function of channel length (which is always less than the membrane's equilibrium thickness): as the channel length is decreased, the potency of LPC is increased. LPC has no effect on membrane thickness or the surface tension of monolayers at the air/electrolyte interface. The bilayer-forming glycerolmonooleate does not decrease the channel dissociation rate constant. These results show that LPLs alter gramicidin channel function by altering the membrane deformation energy, and that the changes in deformation energy can be related to the molecular "shape" of the membrane-modifying compounds. Similar alterations in the mechanical properties of biological membranes may form a general mechanism by which one can alter membrane protein function.  相似文献   

6.
Induction of conductance heterogeneity in gramicidin channels   总被引:8,自引:0,他引:8  
In previous work from our laboratory, 5-10% of the channels formed by [Val1]gramicidin A have conductances that fall outside the narrow range that conventionally has defined the standard gramicidin channel [e.g., see Russell et al. (1986) Biophys. J. 49, 673]. Reports from other laboratories, however, show that up to 50% of [Val1]gramicidin channels have conductances that fall outside the range for standard channels [e.g., see Prasad et al. (1986) Biochemistry 25, 456]. This laboratory-to-laboratory variation in the distribution of gramicidin single-channel conductances suggests that the conductance variants are induced by some environmental factor(s) [Busath et al. (1987) Biophys. J. 51, 79]. In order to test whether extrinsic agents can induce such conductance heterogeneity, we examined the effects of nonionic or zwitterionic detergents upon gramicidin channel behavior. In phospholipid bilayers, detergent addition induces many changes in gramicidin channel behavior: all detergents tested increase the channel appearance rate and average duration; most detergents decrease the conductance of the standard channel; and all but one of the detergents increase the conductance heterogeneity. These results show that the conductance heterogeneity can result from environmental perturbations, thus providing a possible explanation for the laboratory-to-laboratory variation in the heterogeneity of gramicidin channels. In addition, the differential detergent effects suggest possible mechanisms by which detergents can induce the conformational perturbations that result in gramicidin single-channel conductance variations.  相似文献   

7.
8.
Summary An osmotic method was used to study the salt permeability induced by gramicidin A in liposomes. Sequences of cation permeation were obtained for iodide, salycilate, acetate und formate salts in liposomes below and above their transition temperature. Salycilate and formate salts, unlike acetate and iodide salts, exhibit the same sequences for cation selectivity in liposomes below and above their transition temperature. These results can be explained by assuming three mechanisms for salt permeation across gramicidin-containing liposomes: (i) the anion moves by the lipid part of the membrane whereas the cation moves by the gramicidin channel, (ii) movement of the undissociated acid species occurs through the lipid part of the membrane followed by cation-proton exchange via the gramicidin channel and (iii) the cation and anion may move simultaneously via the gramicidin channel.When the movement of the anion or undissociated acid across the lipid part of the membrane is not rate limiting the permeation process, the cation selectivity obtained agrees with the cation selectivity of the gramicidin A channel, as determined by others using independent measurements.  相似文献   

9.
Incorporation of the channel-forming antibiotic gramicidin into the membrane of human erythrocytes highly (up to 30-fold) enhances rates of reorientation (flip) of lysophosphatidylcholine and palmitoylcarnitine to the inner membrane layer after their primary incorporation into the outer layer. Despite the high increase of flip rates by gramicidin, the asymmetric orientation of the inner membrane layer phospholipids phosphatidylethanolamine and phosphatidylserine is stable as demonstrated by the lack of accessibility of these lipids toward cleavage by exogenous phospholipase A2. On the other hand, gramicidin enhances the rate of cleavage of outer membrane layer phosphatidylcholine by phospholipase A2, which indicates changes in the packing of phosphatidylcholine following gramicidin binding. The increase of flip becomes detectable when about 10(5) copies of gramicidin per cell have been bound (gramicidin to membrane phospholipid ratio of 1:2000). This is a 1000-fold higher concentration than that required for an increase of K+ permeability mediated by the gramicidin channel. Acceleration of flip is thus not simply correlated with channel formation. The enhancement of flip is markedly dependent on structural details of gramicidin. Formylation of its four tryptophan residues abolishes the effect. Even at high concentrations of formylated gramicidin at which the extents of binding of native and of formylated gramicidin to the membrane are comparable, no flip acceleration is produced. Enhancement of flip by gramicidin occurs after a temperature-dependent lag phase. At 37 degrees C, flip rates begin to increase within a few minutes and at 25 degrees C, only after 3 h. This lag phase is most likely not due to limitations by the rate of binding of gramicidin to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

11.
Gramicidin A, a linear peptide antibiotic, makes membranes permeable to alkali cations and hydrogen ions by forming transmembrane channels. We report here conductance and fluorescence energy transfer studies of channels containing two kinds of gramicidin. These studies of hybrid channels were designed to determine the number of molecules in a channel. The gramicidins studied were gramicidin A, dansyl gramicidin C, the p-phenylazobenzene sulfonyl derivative of gramicidin C (PABS4 gramicidin C), and the 4-(diethylamino)-phenylazobenzene-4-sulfonyl chloride derivative of gramicidin C (DPBS gramicidin C). The dansyl, PABS and DPBS groups were linked to the hydroxyl group of tyrosine 11 in gramicidin C. The single-channel conductance of PABS gramicidin C in planar bilayer membranes is 0.68 that of gramicidin A. Membranes containing both PABS gramicidin C and gramicidin A exhibit three kinds of channels: a pure gramicidin A, a pure PABS gramicidin C channel, and a hybrid channel with an intermediate conductance (0.82 that of gramicidin A). The dependence of the frequencies of these three kinds of channels on the mole fractions of gramicidin A and PABS gramicidin C in the membrane-forming solution fits a dimer model. Fluorescence energy transfer was used as a complementary means of ascertaining the frequency of hybrid channels. Dansyl gramicidin C was the fluorescent energy donor and DPBS gramicidin C was the energy acceptor. The efficiency of energy transfer between these chromophores in hybrid channels in liposomes was 75%. The relative quantum yield of the dansyl fluorescence was measured as a function of the mole fraction of DPBS gramicidin C. These fluorescence studies, like the single-channel conductance measurements, showed that there are two molecules of gramicidin in a channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes.  相似文献   

12.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

13.
We have tested the hypothesis that peptide tryptophan groups can control the ionic conductance of transmembrane channels. We report here that single gramicidin A channels change conductance state when the peptide tryptophans are flash photolyzed with ultraviolet light. The current flow through planar lipid bilayers containing multiple gramicidin A channels decreases irreversibly when exposed to ultraviolet light. The current-loss action spectrum peaks sharply at the 280 nm absorption maximum of the gramicidin A tryptophans. Gramicidin channel sensitivity to ultraviolet light is found to be about 20-fold higher than that of frog node sodium channels which is even more than expected based on the high tryptophan content of gramicidin. Channels which survive an ultraviolet light exposure exist in a wide variety of different low-conductance forms. The broad distribution of the single channel conductance of these partially photolyzed channels is attributable to the loss of different combinations of the dimer's normal complement of eight tryptophans per channel. Flash photolysis of single channels results in discrete conductance state changes. Partially photolyzed single channels manifest a further conductance cascade when exposed to a second flash of ultraviolet light. Analysis of the photolysis conductance turn-off process indicates that gramicidin A is a multistate electrochemical unit where the peptide tryptophan groups can modulate the flow of ions through the transmembrane channel.  相似文献   

14.
The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution.  相似文献   

15.
An osmotic method was used to study the salt permeability induced by gramicidin A in liposomes. Sequences of cation permeation were obtained for iodide, salycilate, acetate and formate salts in liposomes below and above their transition temperature. Salycilate and formate salts, unlike acetate and iodide salts, exhibit the same sequences for cation selectivity in liposomes below and above their transition temperature. These results can be explained by assuming three mechanisms for salt permeation across gramicidin-containing liposomes: (i) the anion moves by the lipid part of the membrane whereas the cation moves by the gramicidin channel, (ii) movement of the undissociated acid species occurs through the lipid part of the membrane followed by cation-proton exchange via the gramicidin channel and (iii) the cation and anion may move simultaneously via the gramicidin channel. When the movement of the anion or undissociated acid across the lipid part of the membrane is not rate limiting the permeation process, the cation selectivity obtained agrees with the cation selectivity of the gramicidin A channel, as determined by others using independent measurements.  相似文献   

16.
17.
Gramicidin A/gramicidin M heterodimer conductances were measured in planar lipid bilayers and found to form two distinguishable populations about halfway between the gramicidin A and gramicidin M homodimer conductances. This implies that the principle difference in the gramicidin A and gramicidin M transport free-energy profiles occurs at the channel center, where it would produce similar effects on the rate-limiting barrier for the two heterodimers. Kinetic analysis based on this and nearly all previously published homodimer conductance data for both gramicidin A and gramicidin M channels confirms this conclusion, indicating that the translocation step is approximately 100-fold slower in gramicidin M homodimers than in gramicidin A homodimers and that first- and second-ion exit-rate constants are higher by factors of 24 and 10, respectively. Assuming that the ratios of rate constants are related to the free-energy difference between gramicidin A and gramicidin M, we construct an effective ion-Trp free-energy interaction profile that has a minimum at the channel center.  相似文献   

18.
Szule JA  Rand RP 《Biophysical journal》2003,85(3):1702-1712
Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model systems composed of phospholipids and gramicidin, the effects produced by gramicidin on lipid layers were measured. These measurements explore how peptides are able to modulate the spontaneous curvature properties of phospholipid assemblies. The reverse hexagonal, H(II), phase formed by dioleoylphosphatidylethanolamine (DOPE) monolayers decreased in lattice dimension with increasing incorporation of gramicidin. This indicated that gramicidin itself was adding negative curvature to the lipid layers. In this system, gramicidin was measured to have an apparent intrinsic radius of curvature, R0pgram, of -7.1 A. The addition of up to 4 mol% gramicidin in DOPE did not result in the monolayers becoming stiffer, as measured by the monolayer bending moduli. Dioleoylphosphatidylcholine (DOPC) alone forms the lamellar (L(alpha)) phase when hydrated, but undergoes a transition into the reverse hexagonal (H(II)) phase when mixed with gramicidin. The lattice dimension decreases systematically with increased gramicidin content. Again, this indicated that gramicidin was adding negative curvature to the lipid monolayers but the mixture behaved structurally much less consistently than DOPE/gramicidin. Only at 12 mol% gramicidin in dioleoylphosphatidylcholine could an apparent radius of intrinsic curvature of gramicidin (R0pgram) be estimated as -7.4 A. This mixture formed monolayers that were very resistant to bending, with a measured bending modulus of 115 kT.  相似文献   

19.
To determine whether amino acid side-chain substitutions in linear gramicidins after the structure of membrane-spanning channels formed by the modified peptides, we have developed a quantitative measure of structural equivalence of the peptide backbone among gramicidin channels based on functional (single-channel) measurements. The experiments exploit the fact that gramicidin channels are symmetrical dimers, and that channels formed by different gramicidin analogues can be distinguished on the basis of their single-channel current amplitudes or durations. It is thereby possible to determine whether hybrid channels can form between chemically dissimilar peptides, i.e. whether the peptides can adapt to each other. Further, since the relative rates of channel formation as well as the relative concentrations of pure and hybrid channel types can be measured in the same membrane, these experiments provide a quantitative measure of the energetic cost of hybrid channel formation relative to the formation of the pure channels. For a wide variety of different side-chains, we find that substitutions as extreme as glycine to phenylalanine at position 1, at the join between the two monomers in a membrane-spanning dimer, incur no energetic cost for channel formation, which implies that channels formed by each of the modified peptides are structurally equivalent. In addition, the average durations of the hybrid channels (except those having tyrosine or hexafluorovaline at position 1) are intermediate to the average durations of the respective pure channel types, thus providing further evidence for structural equivalence among channels formed by sequence-substituted gramicidins.  相似文献   

20.
Summary Different succinyl derivatives of Gramicidin A were synthesized and their activity was investigated with different methods on lipid bilayer membranes. The succinyl derivatives of Gramicidin A can be classified as three different types, the O-succinyl derivative, the N-succinyl derivative and the N-O-succinyl derivative of Gramicidin A. An O-pyromellityl-N-succinyl gramicidin was synthesized which can be attributed to the latter class. It was found that O-succinyl gramicidin behaves like the unmodified Gramicidin A despite a charge effect on single-channel conductance, arising from the negative charge of the succinic residue, at the mouth of the channel. The activity of N-succinyl and N-O-succinyl gramicidin and of O-pyromellityl-N-succinyl-gramicidin depends strongly on the pH of the electrolyte solution. It is demonstrated that at low pH (5) the N-succinyl derivatives show high activity, whereas at high pH (7) the activity is sharply reduced or disappears totally. From these experiments it can be concluded that, for the formation of a dimeric gramicidin channel, the hydrogen of the formyl group can be replaced by a protonated carboxylic group of a succinic residue.Further results, obtained by measurement of the single-channel conductance and of the reaction rate constants for the channel formation, are discussed in terms of the structural basis of the single stranded model for the gramicidin channel. On this basis the double stranded helix can be, excluded and an interesting head-to-head single stranded (L,D) helical channel is described which contains carboxyl groups at the head-to-head junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号