首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基底神经节中多巴胺和腺苷受体二聚化及其药理学意义   总被引:1,自引:0,他引:1  
孙万春  朱兴族 《生命科学》2004,16(4):193-199
近年来,大量研究发现G蛋白偶联受体不仅以单体形式,而且以同源或异源二聚体形式存在。腺苷A1受体和多巴胺D1受体以及腺苷A2a受体和多巴胺D2受体分别共存于基底神经节中纹状体向黑质和脚内核投射的神经元以及纹状体向苍白球投射的神经元内。A1/D1、A2a/D2受体形成受体异聚复合体构成了受体一受体之间相互作用的分子基础。腺苷和多巴胺受体之间在细胞水平以及行为水平上拮抗性的相互作用为其在帕金森病、精神分裂症、舞蹈病和药物依赖等疾病的治疗上提供了新的靶向。  相似文献   

2.
大量研究表明多巴胺在行为决策、注意力调控和学习记忆等与前扣带皮层(anterior cingulate cortex,ACC)密切相关的认知功能中发挥重要作用。但是,多巴胺受体在ACC神经元上的分布还不清楚,尤其是在中间神经元上的分布。本研究旨在采用免疫组织化学和激光共聚焦扫描显微镜技术,研究多巴胺D1和D2受体在大鼠ACC一类主要类型的中间神经元,即表达钙结合蛋白的中间神经元上的分布。结果显示,D1和D2受体在ACC的小清蛋白(parvalbumin,PV),钙结合蛋白(calbindin D-28k,CB)及钙视网膜蛋白(calretinin,CR)阳性的中间神经元均有分布。其中,D1和D2受体在PV阳性中间神经元上表达较多,在CR阳性中间神经元上表达最少;D1和D2受体在ACC深层PV神经元上的表达比例显著高于浅层。此外,CR阳性中间神经元上D2受体分布比D1受体多。D1和D2受体的这种区域和中间神经元类型特异性的表达,为了解多巴胺对ACC功能的复杂调控提供了形态学基础。  相似文献   

3.
多巴胺D3受体(D3R)的神经科学新进展   总被引:6,自引:0,他引:6  
和友  金国章 《生命科学》2005,17(2):170-175
多巴胺(DA)是脑内一种重要的神经递质,通过不同DA受体亚型调控运动功能、认知活动和药物成瘾等生理、病理过程。多巴胺D3受体(D3R)属于D2样受体,但其功能长期不明。近年来,人们对它在神经科学中的意义有了新的认识。首先,D3R的信号通路独特,它被激活后显示细胞增殖效应,但cAMP信号传导途径不明显。其次,D3R基因敲除小鼠研究提示,正常生理状态下D3R仅表现辅助功能:在特定病理条件下,D3R显示出重要的“平衡缓冲作用”,在精神分裂症、帕金森病(PD)治疗中运动障碍副作用LID的发生和毒品复吸等病理过程扮演了重要角色。因此,D3R是一个重要的药物靶标。D3R拮抗剂在精神分裂症治疗中显示了临床前景,D3R激动剂则对PD治疗和毒品复吸防治展示了应用价值。  相似文献   

4.
目的研究多巴胺(DA)对大鼠结肠运动影响的机制。方法采用离体组织灌流方法记录大鼠远端结肠自发性节律运动,观察DA的作用以及阻断剂的影响,再用反转录实时多聚酶链反应(real time RT-PCR)检测受体基因的表达。结果DA(≥1.0×10-5mol/L)对结肠远端(紧接肛门淋巴结近端)离体纵行肌条(2.0 mm×10 mm)的运动具有抑制作用,多巴胺受体阻断剂(D1受体阻断剂SCH23390,1.0×10-7mol/L,D2受体阻断剂Sulpide,1.0×10-7mol/L)不能阻断多巴胺的抑制效应,但加入β3受体抑制剂cyanopindolol(7.5×10-7mol/L),DA的抑制作用显著减弱。real time RT-PCR检测发现β1、β2、β3受体mRNA在远端结肠均有表达。结论DA可通过β3受体发挥对远端结肠运动的抑制作用。  相似文献   

5.
细胞外信号调节激酶1和2(Erk1/2)是一种丝氨酸/苏氨酸蛋白激酶,属于丝裂原活化蛋白激酶(MAPK)家族的关键成员,通过磷酸化细胞质和细胞核内的多种底物参与正常及病理状态下的细胞活动。以纹状体为核心的基底神经节(basal ganglia, BG)被认为是运动控制相关的重要结构。Erk1/2通过对纹状体胞外多巴胺(DA)和谷氨酸(Glu)信号进行整合,协调了细胞增殖、分化及转录和翻译等重要细胞事件。研究显示,纹状体多巴胺受体1型中等多棘神经元(D1-MSNs)和多巴胺受体2型中等多棘神经元(D2-MSNs)上,Erk/MAPK信号通路具有差异性调控运动行为的作用。纹状体D1-MSNs的Erk1/2通过多巴胺D1样受体(D1R)激活cAMP/PKA通路促进运动行为,D2-MSNs的Erk1/2通过多巴胺D2样受体(D2R)和α-氨-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)抑制运动行为。此外,Erk/MAPK信号通路还能参与调节帕金森病(PD)、亨廷顿病及成瘾行为相关的病理生理学进程。Erk/MAPK信号通路干预能够有效缓解相关运...  相似文献   

6.
通过慢性吗啡处理方式建立起SD大鼠吗啡依赖的条件化位置偏好(CPP)模型,用行为学手段研究多巴胺(DA)D2受体拮抗剂及激动剂对SD大鼠CPP的影响,探讨眶额叶DAD2受体在阿片精神依赖中的作用。通过腹腔注射吗啡同环境因素相结合,建立大鼠吗啡依赖的CPP模型;采用局部脑内微量注射法向额叶注射DAD2受体拮抗剂或激动剂或盐水(对照组),以得到SD大鼠在戒断期间的CPP的时间数据。CPP显示DAD2受体拮抗剂组与对照组相比,从戒断第2天起,前者表现出更明显的CPP增加现象,差异显著(P<0·05)。而DAD2受体激动剂组与对照组相比无显著差异(P>0·05)。采用腹腔小剂量注射吗啡,成功地建立了吗啡依赖SD大鼠的CPP模型;眶额叶微量注射DAD2受体拮抗剂增加了CPP时间,提示眶额叶多巴胺系统在吗啡依赖的过程中有着较为重要的作用;也提示了对于已经成瘾的动物,损伤其眶额叶,会使药物渴求增强。因而提示对于药物依赖患者进行手术干预治疗要极其慎重。  相似文献   

7.
正蛋白激酶A(Protein Kinase A,PKA)富含于纹状体(striatum)与伏隔核(nucleus accumbens)的"中等大小树突棘神经元"(medium-sized spiny neuron,MSN);MSN分为多巴胺1型受体MSN(D1R-MSN)和多巴胺2型受体MSN(D2R-MSN);PKA位于两类神经元的多巴胺受体下游,其信号传导密切参与成瘾行为。因而,对PKA细胞信号传导通路的深入探索,在阐明成瘾机制及其临床诊疗方面具有重要意义。  相似文献   

8.
为探究多巴胺受体拮抗剂对缢蛏多巴胺D2类受体的影响,实验以一龄缢蛏作为研究对象,以3种多巴胺受体拮抗剂多潘立酮(domperidone, Domp)、舒必利(sulpiride, Sulp)、盐酸氯丙臻(chlorprothixene hydrochloride, Chlo)为受试物,设置2 h和6 h两个时间点,探究在三种作用浓度(10~(-2)mol/L, 10~(-3)mol/L和10~(-5)mol/L)下每种受试物对缢蛏两个多巴胺D2类受体(ScDopR2-1和ScDopR2-2)表达量的抑制效果。荧光定量检测多巴胺D2类受体的表达量,并检测c AMP的含量变化。检测结果表明,10-2mol/L浓度下,Chlo组别两个多巴胺受体基因相比对照组在2 h表达量均下降,而cAMP相比对照组含量上升,因此选取Chlo作为缢蛏多巴胺D2类受体拮抗剂,浓度选为10~(-2)mol/L,本实验为进一步研究缢蛏多巴胺D2类受体的功能提供了药理学基础。  相似文献   

9.
Yuan TT  Qiao H  Dong SP  An SC 《生理学报》2011,63(4):333-341
本文旨在探讨在慢性应激性抑郁发生过程中多巴胺D1受体对谷氨酸及其离子型受体的影响。实验通过建立慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)抑郁模型,结合海马微量注射多巴胺D1受体激动剂SKF38393、非竞争性N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体拮抗剂MK-801和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,AMPA)受体的拮抗剂NBQX,运用糖水偏爱测试、旷场实验和悬尾实验等方法检测动物的行为表现,采用高效液相色谱法(high-performance liquid chromatography,HPLC)和Western blot实验来检测海马内谷氨酸含量及其离子型受体关键亚基的表达。结果显示,与对照组相比,CUMS组大鼠表现出明显的抑郁样行为变化,且海马谷氨酸含量升高,其NMDA受体的NR1亚基与AMPA受体的GluR2/3亚基也明显下调;注射SKF38393后可明显改善应激引起的抑郁样行为,且海马谷氨酸含量显...  相似文献   

10.
纹状体是运动调控的关键组成部分,对机体运动控制发挥重要作用。腺苷A2A受体(adenosine A2A receptor, A2AR)与多巴胺D2受体(dopamine D2 receptor, D2DR)在纹状体投射到苍白球的神经元中高度共表达,形成的A2AR/D2DR异聚体具有拮抗效应,共同调节纹状体接收到的谷氨酸能和多巴胺能投射,通过改变纹状体神经元的活性,控制投射向下级核团的GABA能输出,调节基底神经节直接通路和间接通路的平衡,最终对运动产生影响。A2AR/D2DR在细胞水平以及行为水平上的拮抗效应,为其在运动疲劳和帕金森病的运动功能改善上提供了新的靶点。该文将对A2AR/D2DR拮抗效应在运动功能调节中的研究进行综述,为后期研究运动的中枢干预靶点提供新的可能性。  相似文献   

11.
Neurochemical Research - Dopamine is an important neuromodulator in the brain that binds to dopamine D1-like receptors (D1, D5) as well as dopamine D2-like receptors (D2, D3, D4). The D2 receptor...  相似文献   

12.
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.  相似文献   

13.
Dopamine has been recognized as an important modulator of central as well as peripheral physiologic functions in both humans and animals. Dopamine receptors have been identified in a number of organs and tissues, which include several regions within the central nervous system, sympathetic ganglia and postganglionic nerve terminals, various vascular beds, the heart, the gastrointestinal tract, and the kidney. The peripheral dopamine receptors influence cardiovascular and renal function by decreasing afterload and vascular resistance and promoting sodium excretion. Within the kidney, dopamine receptors are present along the nephron, with highest density on proximal tubule epithelial cells. It has been reported that there is a defective dopamine receptor, especially D(1) receptor function, in the proximal tubule of various animal models of hypertension as well as in humans with essential hypertension. Recent reports have revealed the site of and the molecular mechanisms responsible for the defect in D(1) receptors in hypertension. Moreover, recent studies have also demonstrated that the disruption of various dopamine receptor subtypes and their function produces hypertension in rodents. In this review, we present evidence that dopamine and dopamine receptors play an important role in regulating renal sodium excretion and that defective renal dopamine production and/or dopamine receptor function may contribute to the development of various forms of hypertension.  相似文献   

14.
The neurotransmitter dopamine plays an important role in the regulation of behavior in both vertebrates and invertebrates. In mammals, dopamine binds and activates two classes of dopamine receptors, D1-like and D2-like receptors. However, D2-like dopamine receptors in Caenorhabditis elegans have not yet been characterized. We have cloned a cDNA encoding a putative C. elegans D2-like dopamine receptor. The deduced amino acid sequence of the cloned cDNA shows higher sequence similarities to vertebrate D2-like dopamine receptors than to D1-like receptors. Two splice variants that differ in the length of their predicted third intracellular loops were identified. The receptor heterologously expressed in cultured cells showed high affinity binding to [125I]iodo-lysergic acid diethylamide. Dopamine showed the highest affinity for this receptor among several amine neurotransmitters tested. Activation of the heterologously expressed receptor led to the inhibition of cyclic AMP production, confirming that this receptor has the functional property of a D2-like receptor. We have also analyzed the expression pattern of this receptor and found that the receptor is expressed in several neurons including all the dopaminergic neurons in C. elegans.  相似文献   

15.
Dopamine receptors previously identified in corpora allata (CA) of Manduca sexta last instars on the basis of dopamine effects on JH (juvenile hormone)/JH acid biosynthesis and cyclic AMP (cAMP) accumulation, were characterized pharmacologically. For this study, a broad spectrum of agonists or antagonists of D1, D2, D3 or D4 dopamine receptors, together with the dopamine metabolite N-acetyl-dopamine, other neurotransmitters and their agonists/antagonists, were tested for their effects on gland activity and cAMP production. The lack of effect of other neurotransmitters supports the specificity of the effect of dopamine and the dopamine specificity of the receptors. Only the D2 receptor antagonist spiperone had a potent effect on JH biosynthesis and cAMP formation by CA taken on day 0 of the last stadium, when dopamine stimulates both activities and thus appears to be acting via a D1-like receptor. Several other D2 receptor antagonists, and D1, D2/D1 and D4,3/D2 receptor antagonists were less effective. Thus, the D1-like receptor of the Manduca CA appears to be distinct pharmacologically from vertebrate D1 receptors. By contrast, a number of D2 agonists/antagonists had a significant effect on JH acid biosynthesis and cAMP production by the CA from day 6 of the last stadium, when dopamine inhibits both activities and thus appears to be acting via a D2-like receptor. Certain D1-specific agonists/antagonists were equally effective. The Manduca D2-like receptor therefore bears some pharmacological resemblance to vertebrate D2 receptors. N-acetyl dopamine acted as a dopamine agonist with day 6 CA, the first identified function for an N-acetylated biogenic amine in insects. Dopamine was found to have the same differential affect on the formation of cAMP in homogenates of day 0 and day 6 brains as it did with CA, and in the same concentration range. Dopamine receptor agonists/antagonists affecting cAMP formation by day 0 and day 6 CA homogenates had similar effects with brain homogenates. By contrast, dopamine only stimulated cAMP formation by homogenates of day 0 and day 6 abdominal or ventral nerve cord. These results suggest that D1- and D2-like dopamine receptors of Manduca are regionally as well as temporally localized.  相似文献   

16.
Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.Key words: Dopamine D1 and D2 receptors, tubero-infundibular dopamine neurons, dopamine receptor colocalization, arcuate-median eminence complex, volume transmission, luteinizing hormone releasing hormone  相似文献   

17.
18.
Dopamine receptors are important for diverse biological functions and are important pharmacological targets in human medicine. Signal transduction from the dopamine receptors is controlled at many levels, including by the process of receptor trafficking. Little is known regarding the endocytic and postendocytic trafficking properties of the D5 dopamine receptor. Here, we show that endocytosis of the D5 receptor can be achieved both homologously, through direct receptor activation by agonist, and also heterologously, due to independent activation of protein kinase C (PKC). In contrast, the D1 receptor is endocytosed only in response to agonist but not PKC activation. We have identified the residue in the third intracellular loop of the D5 receptor that is both necessary for PKC-mediated endocytosis of the D5 receptor and sufficient to induce PKC-mediated endocytosis when introduced to the D1 receptor. In addition, we show that endocytosis of D5 through both pathways is dependent on clathrin and dynamin but that only agonist-induced endocytosis engages β-arrestin 2. Together, these data show that the D5 receptor shows a trafficking profile distinct from that of any of the other dopamine receptors.  相似文献   

19.
D2 dopaminergic receptors: normal and abnormal transduction mechanisms.   总被引:3,自引:0,他引:3  
Dopamine receptors of D2 type present on lactotroph cells are coupled to a large series of transduction mechanisms. Beside their negative coupling with adenylate cyclase, they are also coupled with potassium and calcium channels, leading to a decreased intracellular calcium concentration. In addition, D2 dopamine receptors also modulate phospholipase activities. Dopamine inhibits inositol phosphate production, through two distinct mechanisms. One of them could represent a direct negative coupling with phospholipase C. All these transduction mechanisms of the D2 dopamine receptors implicate G proteins sensitive to pertussis toxin. In contrast, these receptors are negatively coupled to phospholipase A2 through G proteins insensitive to this toxin. Both isoforms of the D2 dopamine receptor, generated by alternate splicing of a single gene, are present in lactotroph cells. After transfection in CH4C1 cells the two isoforms are coupled with adenylate cyclase while only the shortest isoform appears negatively coupled to phospholipase C. Functional D2 dopamine receptors are present in human prolactinomas. Resistance to bromocriptine therapy is associated with a decreased density of these receptors in the tumor. In addition, the ratio of the two receptor isoforms (measured by PCR) is different in responsive and resistant tumors. Furthermore, the activity of Gi/Go proteins coupled to adenylate cyclase appears also affected in resistant tumors. Resistance to bromocriptine therapy appears thus to involve multiple changes at the different levels of the multiple mechanisms of action of dopamine on lactotroph cells.  相似文献   

20.
Dopamine, one of main modulatory neurotransmitters of the nervous system acts on target cells through two classes of G protein-coupled receptors, D1 and D2. The two dopamine receptor classes display different structures, interact with different regulatory partners (including heterotrimeric G proteins) and, accordingly, have independent evolutionary origins. In vertebrates, each of these receptor classes comprises several subtypes, generated by two steps of gene duplications, early in vertebrate evolution. In the D1 receptor class, the D1A, D1B, D1C and D1D subtypes, and in the D2 class, the D2, D3 and D4 receptor subtypes have been conserved in most vertebrate groups. This conservation has been driven by the acquisition, by each receptor subtype, of a small number of specific properties, which were selected for adaptive purpose in vertebrates. Among these properties, affinity for dopamine, the natural ligand, intrinsic receptor activity, and agonist-induced desensitization clearly distinguish the receptor subtypes. In addition, each dopamine receptor subtype is addressed to a specific location within neuronal networks, although detailed information is lacking for several receptor subtypes. Receptors localization at diverse subcellular places in neurons may also differ from one subtype to another, resulting in different ways of regulating cell signalisation. One challenge for future research on dopamine and its receptors would be to identify the nature of the protein partners and the molecular mechanisms involved in localizing receptors to the neuronal plasma membrane. In this respect, the evolutionary approach we have undertaken suggests that, due to gene duplications, a reasonable degree of freedom exists in the tight organisation of dopamine receptors in neurons. This "evolvability" of dopamine systems has been instrumental to adapt the vertebrate species to nearly all the possible environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号