首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Naegleria spp. are widely distributed free-living amebas, but one species in the genus, N. fowleri , causes acute fulminant primary amebic meningoencephalitis in humans and other animals. Thus, it is important to differentiate N. fowleri from the rest in the genus of Naegleria , and to develop tools for the detection of intra-specific genetic variations. In this study, one isolate each of N. australiensis, N. gruberi, N. jadini , and N. lovaniensis and 22 isolates of N. fowleri were characterized at the internal transcribed spacers (ITS) and mitochondrial small subunit rRNA (mtSSU rRNA) gene. The mtSSU rRNA primers designed amplified DNA of all isolates, with distinct sequences obtained from all species examined. In contrast, the ITS primers only amplified DNA from N. lovaniensis and N. fowleri , with minor sequence differences between the two. Three genotypes of N. fowleri were found among the isolates analyzed in both the mtSSU rRNA gene and ITS. The extent of sequence variation was greater in the mtSSU rRNA gene, but the ITS had the advantage of length polymorphism. These data should be useful in the development of molecular tools for rapid species differentiation and genotyping of Naegleria spp.  相似文献   

2.
The indirect fluorescent-antibody technique was used to assess a rapid method for identification of amoebae belonging to the genus Naegleria. Thirty-eight Naegleria and eight other limax amoeba strains were examined by using one N. gruberi and two N. fowleri antisera. All pathogenic Naegleriae, most of which originated from fatal cases of primary amoebic meningo-encephalitis, were identified as belonging to the fowleri species. Most of the N. gruberi strains showed irregular fluorescence. Other limax amoebae, such as Vahlkampfia, Acanthamoeba, Hartmannella, and Schizopyrenus sp. gave negative responses with the prepared antisera. The indirect fluorescent-antibody technique allows the identification of N. fowleri in a mixed culture of both N. fowleri and N. gruberi strains. Twenty-two Naegleria isolated from a suspected stream, other surface waters, and muddy soil could be excluded from the fowleri species with the indirect fluorescent-antibody technique. The results obtained demonstrate that this immunological technique is a valid method for the rapid identification of N. fowleri trophozoites.  相似文献   

3.
The pathogenic, free-living amoeba Naegleria fowleri is the causative agent of human primary amebic meningoencephalitis. N. fowleri has been isolated from thermally elevated aquatic environments worldwide, but temperature factors associated with occurrence of the amoeba remain undefined. In this study, a newly created cooling reservoir (Clinton Lake, Illinois) was surveyed for Naegleria spp. before and after thermal additions from a nuclear power plant. Water and sediment samples were collected from heated and unheated arms of the reservoir and analyzed for the presence of thermophilic Naegleria spp. and pathogenic N. fowleri. Amoebae were identified by morphology, in vitro cultivation, temperature tolerance, mouse pathogenicity assay, and DNA restriction fragment length analysis. N. fowleri was isolated from the thermally elevated arm but not from the ambient-temperature arm of the reservoir. The probability of isolating thermophilic Naegleria and pathogenic N. fowleri increased significantly with temperature. Repetitive DNA restriction fragment profiles of the N. fowleri Clinton Lake isolates and a known N. fowleri strain of human origin were homogeneous.  相似文献   

4.
The pathogenic, free-living amoeba Naegleria fowleri is the causative agent of human primary amebic meningoencephalitis. N. fowleri has been isolated from thermally elevated aquatic environments worldwide, but temperature factors associated with occurrence of the amoeba remain undefined. In this study, a newly created cooling reservoir (Clinton Lake, Illinois) was surveyed for Naegleria spp. before and after thermal additions from a nuclear power plant. Water and sediment samples were collected from heated and unheated arms of the reservoir and analyzed for the presence of thermophilic Naegleria spp. and pathogenic N. fowleri. Amoebae were identified by morphology, in vitro cultivation, temperature tolerance, mouse pathogenicity assay, and DNA restriction fragment length analysis. N. fowleri was isolated from the thermally elevated arm but not from the ambient-temperature arm of the reservoir. The probability of isolating thermophilic Naegleria and pathogenic N. fowleri increased significantly with temperature. Repetitive DNA restriction fragment profiles of the N. fowleri Clinton Lake isolates and a known N. fowleri strain of human origin were homogeneous.  相似文献   

5.
A species-specific PCR for the identification of Naegleria fowleri was developed. In sensitivity studies, 10 trophozoites or cysts and 1 trophozoite or cyst could be detected after 35 and 45 cycles, respectively. In conjunction with a rapid DNA isolation method, this PCR was used to identify N. fowleri directly from primary cultures of environmental samples.  相似文献   

6.
The genus Naegleria is comprised of a group of free-living ameboflagellates found in diverse habitats worldwide. Over 30 species have been isolated from soil and water but only Naegleria fowleri (N. fowleri) has been associated with human disease. Naegleria fowleri causes primary amebic meningoencephalitis (PAM), a fatal disease of the central nervous system. The pathogenesis of PAM and the role of host immunity to N. fowleri are poorly understood. Strategies for combating infection are limited because disease progression is rapid and N. fowleri has developed strategies to evade the immune system. The medical significance of these free-living ameboflagellates should not be underestimated, not only because they are agents of human disease, but also because they can serve as reservoirs of pathogenic bacteria.  相似文献   

7.
A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites.  相似文献   

8.
Abstract In order to detect and identify Naegleria fowleri strains an assay based on the Polymerase Chain Reaction (PCR) was evaluated. The amplified DNA fragments were detected by gel electrophoresis and ethidium bromide staining, followed by Southern blot hybridization with an internal digoxigenin-labeled probe. A set of primers (B1B2) which flank a 678-bp region within a virulence-associated gene, allowed for the highly specific identification of N. fowleri , since Naegleriae ( N. lovaniensis, N. australiensis, N. gruberi, N. andersoni and N. jadini ) and other Protozoa did not react. These primers did not detect amplification products from various organisms: Gram-positive bacteria, algae, y, yeasts and human DNA. Whereas a second set of primers (A1A2), which flank a different sequence, detected various Naegleriae and Acanthamoebae strains. After 40 amplification cycles, the limit of detection was a single cell (cyst or trophozoite). Thus, the PCR appears to be a rapid and powerful tool for identification and detection of N. fowleri .  相似文献   

9.
Naegleria fowleri, a free-living amoeba, is the causative agent of primary amoebic meningoencephalitis, a fatal human disease of the central nervous system often contracted after swimming in fresh water. Identifying sites contaminated by N. fowleri is important in order to prevent the disease. An Enzyme-Linked ImmunoSorbent Assay (ELISA) has been developed for the specific identification of N. fawleri in primary cultures of environmental water samples. Of 939 samples isolated from artificially heated river water and screened by ELISA, 283 were positive. These results were subsequently confirmed by isoelectric focusing, the established reference method. A sensitivity of 97.4% and a specificity of 97% were obtained. These results indicate that this ELISA method is reliable and can be considered as a powerful tool for the detection of N. fowleri in environmental water samples.  相似文献   

10.
Internal transcribed spacers (ITS) and the 5.8S ribosomal gene of 21 Naegleria fowleri strains and eight other species including Naegleria gruberi were sequenced. The results showed that this region can help differentiate between and within species. The phylogeny of Naegleria spp. deduced from the ITS and the 5.8S gene produced four major lineages, fowleri-lovaniensis, galeacystis-italica-clarki-gruberi-australiensis, andersoni-jamiesoni, and pussardi, that fit perfectly with those inferred from the 18S rRNA gene analysis. The N. gruberi isolate, NG260, was closely related to Naegleria pussardi. The other N. gruberi isolates branched together with Naegleria australiensis in another lineage. The ITS and 5.8S results for N. fowleri were congruent with those previously deduced by RAPD analysis. The phylogenetic analysis inferred from ITS and RAPD data revealed two major groups. The French Cattenom and Chooz and South Pacific strains constituted the first group. The second group encompassed the strains corresponding to the Euro-American and Widespread RAPD variants and shared the same substitution in the 5.8S gene. In addition, it was possible to define species specific primers in ITS regions to rapidly identify N. fowleri.  相似文献   

11.
12.
The free-living amoeboflagellate genus Naegleria includes one pathogenic and two potentially pathogenic species (Naegleria fowleri, Naegleria italica, and Naegleria australiensis) plus numerous benign organisms. Monitoring of bathing water, water supplies, and cooling systems for these pathogens requires a timely and reliable method for identification, but current DNA sequence-based methods identify only N. fowleri or require full sequencing to identify other species in the genus. A novel closed-tube method for distinguishing thermophilic Naegleria species is presented, using a single primer set and the DNA intercalating dye SYTO9 for real-time PCR and melting-curve analysis of the 5.8S ribosomal DNA gene and flanking noncoding spacers (ITS1, ITS2). Collection of DNA melting data at close temperature intervals produces highly informative melting curves with one or more recognizable melting peaks, readily distinguished for seven Naegleria species and the related Willaertia magna. Advantages over other methods used to identify these organisms include its comprehensiveness (encompassing all species tested to date), simplicity (no electrophoresis required to verify the product), and sensitivity (unambiguous identification from DNA equivalent to one cell). This approach should be applicable to a wide range of microorganisms of medical importance.  相似文献   

13.
Samples from 24 aquaria were incubated at 28, 37, and 45 degrees C for the isolation of Naegleria and Acanthamoeba. Naegleria was the predominant genus (60.9%), whereas Acanthamoeba represented 15.5% of the isolates. No pathogenic N. fowleri was identified, although a high number of strains were closely related to this species. One isolate (Aq/9/1/45D) was compared with an aquarium isolate (PPMFB-6) from Australia. The Belgian isolate was found to be more related to N. fowleri, whereas the Australian isolate was closer to N. gruberi.  相似文献   

14.
Growth in an axenic medium composed by Chang (3rd Int. Congr. Parasitol. Munich Abstr. ICPIII 1:187-188, 1974) allowed separation of pathogenic from nonpathogenic Naegleria fowleri strains, since only the former show luxuriant growth in this medium. On the basis of these results, this medium was used in early screening for virulent Naegleria isolates. During an extensive ecological study, data were obtained on 102 Naegleria strains. Twenty of these strains grew luxuriantly in this liquid medium. Seventeen of them were tested by intranasal instillation in mice, and all proved to be highly pathogenic. Strains showing only moderate growth or no growth at all in this axenic medium were found to be nonpathogenic for mice. Moreover, it was found that using this medium in the early stage of Naegleria sampling favors isolation of pathogenic strains in mixtures of Naegleria. During these experiments, further evidence was obtained that thermal polluted waters are the main origin of N. fowleri in the environment.  相似文献   

15.
Samples from 24 aquaria were incubated at 28, 37, and 45 degrees C for the isolation of Naegleria and Acanthamoeba. Naegleria was the predominant genus (60.9%), whereas Acanthamoeba represented 15.5% of the isolates. No pathogenic N. fowleri was identified, although a high number of strains were closely related to this species. One isolate (Aq/9/1/45D) was compared with an aquarium isolate (PPMFB-6) from Australia. The Belgian isolate was found to be more related to N. fowleri, whereas the Australian isolate was closer to N. gruberi.  相似文献   

16.
The occurrence of pathogenic Naegleria fowleri in thermal discharges, recipient waters, and cooling towers of eight power plants located in western Pennsylvania was investigated for 2 years in conjunction with several environmental measurements. Pathogenic N. fowleri was detected in one cooling tower and in the discharge, receiving waters, or both of five of eight localities. The occurrence of this organism was related to elevated temperatures, but no significant correlation was found for other biological and chemical parameters. Laboratory experiments on the effect of pH on pathogenic N. fowleri documented 100% survival at a range from 2.1 to 8.15. Higher pH reduced or killed the amoebae. No case of human primary amoebic meningoencephalitis occurred during the study.  相似文献   

17.
The occurrence of pathogenic Naegleria fowleri in thermal discharges, recipient waters, and cooling towers of eight power plants located in western Pennsylvania was investigated for 2 years in conjunction with several environmental measurements. Pathogenic N. fowleri was detected in one cooling tower and in the discharge, receiving waters, or both of five of eight localities. The occurrence of this organism was related to elevated temperatures, but no significant correlation was found for other biological and chemical parameters. Laboratory experiments on the effect of pH on pathogenic N. fowleri documented 100% survival at a range from 2.1 to 8.15. Higher pH reduced or killed the amoebae. No case of human primary amoebic meningoencephalitis occurred during the study.  相似文献   

18.
To determine whether artificial heating of water by power plant discharges facilitates proliferation of the pathogenic free-living amoebae that cause primary amoebic meningoencephalitis, water samples (250 ml) were taken from discharges within 3,000 feet (ca. 914.4 m) of power plants and were processed for amoeba culture. Pathogenic Naegleria fowleri grew out of water samples from two of five lakes and rivers in Florida and from one of eight man-made lakes in Texas. Pathogenic N. fowleri did not grow from water samples taken from cooling towers and control lakes, the latter of which had no associated power plants. The identification of N. fowleri was confirmed by pathogenicity in mice and by indirect immunofluorescence analyses, by using a specific antiserum.  相似文献   

19.
Abstract A simple isoenzyme cellulose acetate membrane electrophoresis method with respect to glucose phosphate isomerase (GPI) was developed for the differentiation of the human pathogenic free-living amoeba Naegleria fowleri from other Naegleria spp. A single GPI band was detected in all the species tested, the relative mobility of which could be used to identify N. fowleri . Of the other Naegleria spp., only N. italica and N. jadini shared a common GPI mobility. No intraspecies variation in GPI profile was detected, regardless of whether the strains were cultured in monoxenic or axenic media. The technique is proposed as a useful means of identifying N. fowleri soon after isolation from the environment.  相似文献   

20.
SYNOPSIS. Naegleria fowleri strains HB-1 and KUL, pathogenic for humans, Naegleria gruberi strain 1518/1e, and 3 strains (Vm1, LvH1, and LvH2) of Naegleria isolated from a body of water polluted with thermal effluents were compared in an attempt at specific identifications of the latter strains. The 3 environmental isolates were morphologically almost identical with N. fowleri and had almost the same temperature tolerance, although at 37 and 42 C the growth rates of LvH1 and LvH2 were higher than those of the human pathogen, N. fowleri, and of isolate Vm1, which was pathogenic for mice. Serologic examinations by indirect fluorescent antibody method revealed a very close relationship of the new isolates with the human pathogens. While Vm1 was indistinguishable from N. fowleri, LvH1 and LvH2 were not, when cross-absorbed antisera were used. Of all the strains examined, only the 2 LvH isolates were not inhibited by amphotericin B, while only N. gruberi was not inhibited by fumagillin. The cytopathic effect in Vero cell cultures suggested that the LvH strains could have a certain degree of virulence, although this was not confirmed by intranasal and intracerebral inoculations of mice. The cytopathic effects of the human pathogens and of the isolate pathogenic for mice were related to their virulence for mice. It is concluded that there exists an intermediate form between N. gruberi and N. fowleri, with a strong relationship to the latter species. We refer to such strains as nonpathogenic variants of N. fowleri. Further research is needed to reveal their place in the taxonomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号