首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The recent and surprising discovery of widespread NIRVs (non-retroviral integrated RNA viruses) has highlighted the importance of genomic interactions between non-retroviral RNA viruses and their eukaryotic hosts. Among the viruses with integrated representatives are the rhabdoviruses, a family of negative sense single-stranded RNA viruses. We identify sigma virus-like NIRVs of Drosophila spp. that represent unique cases where NIRVs are closely related to exogenous RNA viruses in a model host organism. We have used a combination of bioinformatics and laboratory methods to explore the evolution and expression of sigma virus-like NIRVs in Drosophila. Recent integrations in Drosophila provide a promising experimental system to study functionality of NIRVs. Moreover, the genomic architecture of recent NIRVs provides an unusual evolutionary window on the integration mechanism. For example, we found that a sigma virus-like polymerase associated protein (P) gene appears to have been integrated by template switching of the blastopia-like LTR retrotransposon. The sigma virus P-like NIRV is present in multiple retroelement fused open reading frames on the X and 3R chromosomes of Drosophila yakuba - the X-linked copy is transcribed to produce an RNA product in adult flies. We present the first account of sigma virus-like NIRVs and the first example of NIRV expression in a model animal system, and therefore provide a platform for further study of the possible functions of NIRVs in animal hosts.  相似文献   

4.
5.
Drosophila melanogaster has a robust and efficient innate immune system, which reacts to infections ranging from bacteria to fungi and, as discovered recently, viruses as well. The known Drosophila immune responses rely on humoral and cellular activities, similar to those found in the innate immune system of other animals. Recently, RNAi or 'RNA silencing' has arisen as a possible means by which Drosophila can react to a specific pathogens, transposons and retroviral elements, in a fashion similar to that of a traditional mammalian adaptive immune system instead of in a more generalized and genome encoded innate immune-based response. RNAi is a highly conserved regulation and defence mechanism, which suppresses gene expression via targeted RNA degradation directed by either exogenous dsRNA (cleaved into siRNAs) or endogenous miRNAs. In plants, RNAi has been found to act as an antiviral immune response system. Here we show that RNAi is an antiviral response used by Drosophila to combat infection by Drosophila X Virus, a birnavirus, as well. Additionally, we identify multiple core RNAi pathway genes, including piwi, vasa intronic gene (vig), aubergine (aub), armitage (armi), Rm62, r2d2 and Argonaute2 (AGO2) as having vital roles in this response in whole organisms. Our findings establish Drosophila as an ideal model for the study of antiviral RNAi responses in animals.  相似文献   

6.
7.
8.
9.
Making a better RNAi vector for Drosophila: use of intron spacers   总被引:6,自引:0,他引:6  
  相似文献   

10.
Spinal muscular atrophy is an autosomal recessive motor neuron degenerative disorder, caused by the loss of telomeric copy of the survival motor neuron gene (SMN1). To better understand how motor neurons are targeted in Spinal muscular atrophy patients, it is important to study the role of SMN protein in cell death. In this report, we employed RNA interference (RNAi) to study the loss-of-function of SMN in Drosophila S2 cells. A 601-base pair double-stranded RNA (dsRNA) of Drosophila SMN (dSMN) was used for silencing the dSMN. Our data indicate that dSMN RNAi resulted in more than 90% reduction of both RNA and protein. Further analysis of S2 cells by cell death ELISA and flow cytometry assays revealed that reduction of dSMN expression significantly increased apoptosis. The cell death mediated by SMN depletion is caspase-dependent and specifically due to the activation of the endogenous caspases, DRONC and DRICE. Significantly, the effect of dSMN RNAi was reversed by a peptide caspase inhibitor, Z-VAD-fmk. These results suggest that dSMN is involved in signal pathways of apoptotic cell death in Drosophila. Hence, the model system of reduced SMN expression by RNAi in Drosophila could be exploited for identification of therapeutic targets.  相似文献   

11.
The effect of RNA interference (RNAi) is generally more potent in Drosophila Schneider 2 (S2) cells than in mammalian cells. In mammalian cells, PolIII promoter-based DNA vectors can be used to express small interfering RNA (siRNA) or short hairpin RNA (shRNA); however, this has not been demonstrated in cultured Drosophila cells. Here we show that shRNAs transcribed from the Drosophila U6 promoter can efficiently trigger gene silencing in S2 cells. By targeting firefly luciferase mRNA, we assessed the efficacy of the shRNAs and examined the structural requirements for highly effective shRNAs. The silencing effect was dependent on the length of the stem region and the sequence of the loop region. Furthermore, we demonstrate that the expression of the endogenous cyclin E protein can be repressed by the U6 promoter-driven shRNAs. Drosophila U6 promoter-based shRNA expression systems may permit stable gene silencing in S2 cells.  相似文献   

12.
13.
14.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   

15.
16.
Heritable gene silencing in Drosophila using double-stranded RNA   总被引:50,自引:0,他引:50  
RNA-mediated interference (RNAi) is a recently discovered method to determine gene function in a number of organisms, including plants, nematodes, Drosophila, zebrafish, and mice. Injection of double-stranded RNA (dsRNA) corresponding to a single gene into organisms silences expression of the specific gene. Rapid degradation of mRNA in affected cells blocks gene expression. Despite the promise of RNAi as a tool for functional genomics, injection of dsRNA interferes with gene expression transiently and is not stably inherited. Consequently, use of RNAi to study gene function in the late stages of development has been limited. It is particularly problematic for development of disease models that reply on post-natal individuals. To circumvent this problem in Drosophila, we have developed a method to express dsRNA as an extended hairpin-loop RNA. This method has recently been successful in generating RNAi in the nematode Caenorhabditis elegans. The hairpin RNA is expressed from a transgene exhibiting dyad symmetry in a controlled temporal and spatial pattern. We report that the stably inherited transgene confers specific interference of gene expression in embryos, and tissues that give rise to adult structures such as the wings, legs, eyes, and brain. Thus, RNAi can be adapted to study late-acting gene function in Drosophila. The success of this approach in Drosophila and C. elegans suggests that a similar approach may prove useful to study gene function in higher organisms for which transgenic technology is available.  相似文献   

17.
Mago Nashi, a protein initially shown to be essential in the development of the Drosophila oocyte, is highly conserved among species and shows no homology to any other known cellular proteins. Here we report the nucleotide sequence of a cDNA and a partial gene that encode rice Mago Nashi protein homologs. In addition, we present the tissue-specific expression pattern of mago nashi at the level of RNA and protein. The rice Mago Nashi protein shares at least 73% amino acid identity with all known animal homologs. Genomic DNA gel blot analysis indicates that two copies of the mago nashi gene exist in the rice genome, one of which has identical intron positions to those found in an Arabidopsis homolog. mago nashi is expressed in root, leaf and developing seed tissue as determined by RNA and protein gel blot analysis. Evidence from Drosophila, Caenorhabditis elegans and human studies of Mago Nashi suggests that a major function of this protein is its involvement in RNA localization. The highly conserved amino acid sequence of all Mago Nashi protein homologs across kingdoms suggests that the plant version of this protein may similarly be involved in RNA localization.  相似文献   

18.
The elucidation of the biological role of glycan is one of the most important issues to be resolved following the genome project. RNA interference is becoming an efficient reverse genetic tool for studying gene function in model organisms, including C.elegans and Drosophila melanogaster. Our molecular evolutionary study has shown that a prototype of glycosyltransferases, which synthesize a variety of glycan structures in the Golgi apparatus, was conserved between mammals and Drosophila. For analyses of the basic physiological functions of glycans, we established the Drosophila inducible RNAi knockdown system and applied it to one glycosyltransferase and one transporter, proteoglycan UDP-galactose: beta-xylose beta1,4galactosyltransferase I and the PAPS-transporter, respectively. If on the silencing of each gene induced ubiquitously under the control of a cytoplasmic actin promoter, the RNAi knockdown fly died, then the protein was indispensable for life. The expression of the target gene was disrupted specifically and the degree of interference was well correlated with the phenotype. The inducible RNAi knockdown fly obtained using the GAL4-UAS system will pave the way for the functional analysis of glycans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号