首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paralemmin was identified in the chicken lens as a protein with mol. wt 65 kDa and a splice variant of 60 kDa, both soluble in Triton X-100. Paralemmin is localized to the plasma membrane of fiber cells, and was not detected in the annular pad cells. Thus in the chick lens it is another feature of fiber cell differentiation. Its localization to the short side of the fiber cell and the sites of fiber cell interlocking suggests that paralemmin may play a role in the development of such interdigitating processes.  相似文献   

2.
Embryonic chicken lenses, which had been disrupted by trypsin, were grown in culture. These cultures mimic lens development as it occurred in vivo, forming lens-like structures known as lentoids. Using a variety of techniques including electron microscopic analysis, autoradiography, immunofluorescence, and polyacrylamide gel electrophoresis, it was shown that the lentoid cells had many characteristics in common with the differentiated cells of the intact lens, the elongated fiber cells. These characteristics included a shut off of DNA synthesis, a loss of cell organelles, an increase in cell volume, an increase in δ-crystallin protein, and the development of extensive intercellular junctions. The cultures began as a simple epithelial monolayer but then underwent extensive morphogenesis as they differentiated. This morphogenesis involved three distinctive morphological types which appeared in sequence as an epithelial monolayer of polygonal shaped cells with pavement packing, elongated cells oriented end to end, and the multilayered, multicellular lentoids. These distinct morphological stages of differentiation in culture mimic morphogenesis as it occurs in the lens.  相似文献   

3.
Metabolism of xylose by the lens; calf lens in vitro   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

4.
5.
6.
Transport properties of the lens   总被引:4,自引:0,他引:4  
  相似文献   

7.
8.
Ezrin and radixin and protein 4.1 were detected in the lens of the eye. These proteins were mainly present in the young elongating cortical fiber cells and localized to the plasma membranes. Moesin was not detected. Ezrin, radixin, and protein 4.1 provide another means whereby actin is linked to the plasma membrane in addition to the known adherens junctions in the lens.  相似文献   

9.
10.
11.
12.
beta-Catenin plays a key role in cadherin-mediated cell adhesion as well as in canonical Wnt signaling. To study the role of beta-catenin during eye development, we used conditional Cre/loxP system in mouse to inactivate beta-catenin in developing lens and retina. Inactivation of beta-catenin does not suppress lens fate, but instead results in abnormal morphogenesis of the lens. Using BAT-gal reporter mice, we show that beta-catenin-mediated Wnt signaling is notably absent from lens and neuroretina throughout eye development. The observed defect is therefore likely due to the cytoskeletal role of beta-catenin, and is accompanied by impaired epithelial cell adhesion. In contrast, inactivation of beta-catenin in the nasal ectoderm, an area with active Wnt signaling, results in formation of crystallin-positive ectopic lentoid bodies. These data suggest that, outside of the normal lens, beta-catenin functions as a coactivator of canonical Wnt signaling to suppress lens fate.  相似文献   

13.
Insulin-like growth factor-I (IGF-I) has been implicated as a regulator of lens development. Experiments performed in the chick have indicated that IGF-I can stimulate lens fiber cell differentiation and may be involved in controlling lens polarization. To assess IGF-I activity on mammalian lens cells in vivo, we generated transgenic mice in which this factor was overexpressed from the alphaA-crystallin promoter. Interestingly, we observed no premature differentiation of lens epithelial cells. The pattern of lens polarization was perturbed, with an apparent expansion of the epithelial compartment towards the posterior lens pole. The distribution of immunoreactivity for MIP26 and p57(KIP2) and a modified pattern of proliferation suggested that this morphological change was best described as an expansion of the germinative and transitional zones. The expression of IGF-I signaling components in the normal transitional zone and expansion of the transitional zone in the transgenic lens both suggest that endogenous IGF-I may provide a spatial cue that helps to control the normal location of this domain.  相似文献   

14.
15.
The aim of this work was to study the regional variation of some antioxidant systems in calf lens. Specific lens regions of nearly same age were obtained by a microsectioning technique, and the concentration of reduced and oxidized glutathione, protein sulfhydryl groups and iron were measured in each lens region. The concentration of reduced glutathione, the major redox buffer in lens, exponentially decreased from the cortical regions to the nucleus. In contrast, the concentration of protein sulfhydryl groups gradually increased from the cortex toward the nucleus. The protein-bound disulfides remained constant throughout the lens. Iron was concentrated in the outer cortical region. The results show that the most dynamic redox-active zone in the lens is the subcapsular cortical region where the oxidant flux meets a highly reducing environment containing a potent redox catalyst.  相似文献   

16.
The ability of transparent and cataractous human, rabbit and mice lenses to metabolize hydrogen peroxide in the surrounding medium was evaluated. Using a chemiluminescence method in a system of luminol-horseradish peroxidase and a photometric technique, the temperature-dependent kinetics of H2O2 decomposition by lenses were measured. The ability of opaque human lenses to catalyze the decomposition of 10?4 M H2O2 was significantly decreased. However, this was reserved by the addition of GSH to the incubation medium. Incubation of the mice lenses with the initial concentration H2O2 10?4 M led to partial depletion of GSH in normal and cataractous lenses. Human cataractous lenses showed decreased activities of glutathione reductase, glutathione peroxidase (catalyzing reduction of organic hydroperoxides including hydroperoxides of lipids), superoxide dismutase, but no signs of depletion in activities of catalase or glutathione peroxidase (utilizing H2O2). The findings indicated an impairment in peroxide metabolism of the mature cataractous lenses compared to normal lenses to be resulted from a deficiency of GSH. An oxidative stress induced by accumulation of lipid peroxidation products in the lens membranes during cataract progression could be considered as a primary cause of GSH deficiency and disturbance of the redox balance in the lens.  相似文献   

17.
18.
19.
20.
The unusually high levels of saturation and thus order contribute to the uniqueness of human lens membranes. In addition, and unlike in most biomembranes, most of the lens lipids are associated with proteins, thus reducing their mobility. The major phospholipid of the human lens is dihydrosphingomyelin. Found in significant quantities only in primate lenses, particularly human ones, this lipid is so extremely stable that it was reported to be the only lipid remaining in a frozen mammoth 40,000 years after its death. Unusually high levels of cholesterol add peculiarity to the composition of lens membranes. Beyond the lateral segregation of lipids into dynamic domains known as rafts, the high abundance of cholesterol in the human lens leads to the formation of patches of pure cholesterol. Changes in human lens lipid composition with age and disease as well as differences among species are greater than those observed for any other biomembrane. The relationships among lens membrane composition, structure, and lipid conformation reviewed in this article are unique to the mammalian lens and offer exciting insights into lens membrane function. This review focuses on findings reported over the last two decades that demonstrate the uniqueness of mammalian lens membranes regarding their morphology and composition. Becaue the membranes of human lenses do undergo the most dramatic changes with age and cataractogenesis, the final sections of this review address our current knowledge of the unusual composition and organization of adult human lens membranes with and without opacification. Finally, the questions that still remain to be answered are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号