首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(+)-1-[(1R, 3S, 4R)-3-hydroxy-4-hydroxymethylcyclopentyl]-5-[(E)-2- bromovinyl]-1H,3H-pyrimidin-2,4-dione 10 was synthesized starting from (+)-endo-5-norbornen-2-yl acetate. This chiral educt was obtained by enzymatic hydrolysis of racemic esters of endo-5-norbornen-2-ol.  相似文献   

2.
(E)-5-(2-bromovinyl)-2'-deoxyuridine 5'-triphosphate (BVdUTP), known as a specific inhibitor of herpes simplex virus (type 1)-DNA polymerase, was found to be a potent inhibitor of the activity of terminal deoxynucleotidyltransferase (TdT) from calf thymus. BVdUTP was not an efficient substrate of TdT, but it inhibited the incorporation of normal deoxynucleotide substrates in competitive fashion at the nucleotide binding site of TdT molecule. The Ki value for BVdUTP (5 microM) was much less than the Km value for dGTP (83 microM), indicating stronger affinity of the inhibitor to TdT than that of the substrate. These results indicate the usefulness of BVdUTP as a potent inhibitor of TdT for elucidation of the reaction mechanism of this enzyme.  相似文献   

3.
The carbocyclic analogues of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVDU), in which the sugar moiety is replaced by a cyclopentane ring and which have been designated as C-BVDU and C-IVDU, respectively, are, like their parent compounds BVDU and IVDU, potent and selective inhibitors of herpes simplex virus type 1 (HSV-1) and, to a lesser extent, herpes simplex virus type 2 (HSV-2) replication. We have now synthesized the radiolabeled C-IVDU analogue, C-[125I]IVDU, and determined its metabolism by HSV-infected and mock-infected Vero cells. C-[125I]IVDU was effectively phosphorylated by HSV-1-infected cells and, to a lesser extent, HSV-2-infected cells. C-[125I]IVDU was not phosphorylated to an appreciable extent by either mock-infected cells or cells that had been infected with a thymidine kinase-deficient mutant of HSV-1. Furthermore, C-[125I]IVDU was incorporated into both viral and cellular DNA of HSV-1-infected Vero cells. This finding represents the first demonstration of the incorporation of a cyclopentylpyrimidine into DNA.  相似文献   

4.
Time course of incorporation and the effect of 5'-triphosphate of the selective antiherpetic agent (E)-5-(2-bromovinyl)-2'-deoxyuridine (bv5dUTP) on the incorporation of dTTP and dATP into template-primers of different structure were studied in E. coli DNA polymerase I Klenow fragment enzyme-catalyzed reactions. bv5dUTP could substitute for dTTP depending on the structure of template-primer. E.g. into calf thymus DNA incorporation of bv5dUMP was around 80% of that of dTMP at 30 minutes of incubation. The analog has also inhibited dTMP incorporation, net DNA synthesis, however, was hardly affected. The substrate properties of the analog were studied with [2-14C]-labelled bv5dUTP.  相似文献   

5.
(E)-5-(2-Bromovinyl)-2'-deoxyuridine 5'-triphosphate (BrVdUTP) and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil 5'-triphosphate (BrVarafUTP), which are known as specific inhibitors of herpes simplex viral (type 1 and 2) DNA polymerase, were found to be strong inhibitors of DNA polymerase gamma from human KB and murine myeloma cells. In fact BrVdUTP and BrVarafUTP were found to be stronger inhibitors of DNA polymerase gamma than of other DNA polymerases having viral (herpes simplex virus or retrovirus) origin or cellular (eukaryotic alpha and beta, or prokaryotic) origin. The mode of inhibition of DNA polymerase gamma by BrVdUTP and BrVarafUTP was competitive with respect to dTTP, the normal substrate. Whereas BrVdUTP was an efficient substrate for DNA polymerase gamma and other DNA polymerases that were examined, BrVarafUTP failed to serve as a substrate for DNA synthesis. Ki values for BrVdUTP (40 nM) and BrVarafUTP (7 nM) with DNA polymerase gamma, as determined with (rA)n.(dT) as the template.primer, were much smaller than the Km values for dTTP (0.16 microM and 0.71 microM for murine and human DNA polymerase gamma, respectively). Thus, the affinity of BrVdUTP or BrVarafUTP for DNA polymerase gamma was much stronger than that of dTTP.  相似文献   

6.
7.
In an attempt to synthesize DNA containing 2'-deoxy-5-(trifluoromethyl)uridine (1) using previously published protocols, we found that the trifluoromethyl group converted into a cyano group, resulting in DNA containing 5-cyano-2'-deoxyuridine (3). We show that nucleoside 1 can be incorporated into DNA using phosphoramidite 2 in combination with acetyl-protected deoxycytidine and phenoxyacetyl-protected purine phosphoramidites. Replacing thymidine in DNA with 1 caused a slight decrease in DNA duplex stability at pH 6.9.  相似文献   

8.
A new modified polydeoxynucleotide, a copolymer of nucleotides of 2'-deoxyadenosine and the very efficacious anti-herpesvirus agent (E)-5-(2-bromovinyl)-2'-deoxyuridine was synthesized with E. coli DNA polymerase I enzyme. It is characterized by its physical (absorption and circular dichroism spectra, thermal transition, sedimentation analysis) and bioorganic (template activity, stability) properties. Compared to poly [d(A-T)], the modified polydeoxynucleotide had a lower thermal stability but exhibited higher stability against DNases and higher template activity for DNA synthesis. Template activity for RNA synthesis of this template was, however, poor and extent of AMP and UMP incorporation was limited as well.  相似文献   

9.
10.
(E)-3',5'-Diamino-5-(2-bromovinyl)-2',3',5'-trideoxyuridine (5), the diamino analogue of BVDU (1), was synthesized from BVDU. The protonation behavior of 5 has been studied by means of pH-metric measurements and NMR spectroscopy. This study allows the determination of the basicity constants and the stepwise protonation sites. Thus, the main species at physiological pH is the monoprotonated form. The conformational analysis of this nucleoside analogue was also carried out through 1H NMR spectroscopy. In addition, a convenient synthesis of N-3' and N-5' acylated derivatives was developed by regioselective enzymatic acylation. Thus, Candida antarctica lipase B (CAL-B) selectively acylated the 5'-amino group, thus furnishing nucleosides 8. On the other hand, immobilized Pseudomonas cepacia lipase (PSL-C) exhibited the opposite selectivity, conferring acylation at the 3'-amino group, thus affording derivatives 9.  相似文献   

11.
The highly potent and selective anti-herpesvirus agent, (E)-5-(2-bromovinyl)-2'deoxyuridine (BVdU), was examined for its inhibitory effect on the salmonid herpesviruses Oncorhynchus masou virus (OMV) and Herpesvirus salmonis (H. salmonis). Minimum inhibitory concentrations (MIC) of BVdU for OMV and H. salmonis were 1.25 and 3.0 micrograms/ml, respectively; these values were equal to or higher than those obtained for acyclovir or cytarabine. OMV DNA polymerase activity was reduced in a dose-dependent fashion by BVdU 5'-triphosphate (BVdUTP) within the concentration range of 3 to 30 microM. However, BVdUTP could also be substituted for the natural substrate, TTP, in the OMV DNA polymerase assay. It is postulated that the inhibitory action of BVdU on the salmonid herpesviruses is more or less similar to that on other herpesviruses and resides with respect to the inhibition of the virus DNA polymerase activity as well as incorporation of BVdU into the viral DNA.  相似文献   

12.
13.
The highly potent and selective antiherpes drug BVdUrd [(E)-5-(2-bromovinyl)-2'-deoxyuridine] is cleared within 2-3 hours from the bloodstream upon intraperitoneal administration to rats. It is degraded to BVUra [(E)-5-(2-bromovinyl)uracil] and this inactive metabolite is cleared very slowly from the bloodstream so that 24 hours after the administration of BVdUrd, BVUra is still detectable in the plasma. This contrasts with several other 5-substituted uracils, i.e. 5-fluorouracil, 5-iodouracil, 5-trifluorothymine and thymine itself, which are, like their 2'-deoxyuridine counterparts FdUrd, IdUrd, F3dThd and dThd, cleared from the plasma within 2-3 hours. The injection of dThd or any of the other 5-substituted 2'-deoxyuridines at 3 hours after the injection of BVdUrd, that is at a time when BVdUrd has disappeared completely from the circulation, results in the re-apparition of BVdUrd in the plasma. Apparently, BVdUrd is regenerated from BVUra following the reaction catalyzed by pyrimidine nucleoside phosphorylases : BVUra + dThd----BVdUrd + Thy. BVdUrd can even be generated de novo if dThd (or FdUrd, IdUrd or F3dThd) are administered 3 hours after a preceding injection of BVUra. These findings represent a unique example of the (re)generation of an active drug from its inactive metabolite in vivo.  相似文献   

14.
We have used quantitative DNase I footprinting and UV-melting studies to examine the formation of DNA triplexes in which the third strand thymines have been replaced by 5-propargylamino-dU (UP). The intra-molecular triplex A6-L-T6-L-(UP)5T (L = two octanediol residues) shows a single UV-melting transition which is >20 degrees higher than that of the parent triplex A6-L-T6-L-T6at pH 5.5. Although a single transition is observed at all pHs, the melting temperature (Tm) of the modified oligonucleotide decreases at higher pHs, consistent with the requirement for protonation of the amino group. A similar intramolecular triplex with a longer overhanging duplex shows two melting transitions, the lower of which is stabilised by substitution of T by UP, in a pH dependent fashion. Triplex stability increases by approximately 12 K for each T to UP substitution. Quantitative footprinting studies have examined the interaction of three UP-containing 9mer oligonucleotides with the different portions of the 17mer sequence 5'-AGGAAGAGAAAAAAGAA. At pH 5.0, the UP-containing oligo-nucleotides footprint to much lower concentrations than their T-containing counterparts. In particular (UP)6CUPT binds approximately 1000-fold more tightly than the unmodified oligonucleotide T6CTT. Oligonucleotides containing fewer UP residues are stabilised to a lesser extent. The affinity of these modified third strands decreases at higher pHs. These results demonstrate that the stability of DNA triplexes can be dramatically increased by using positively charged analogues of thymine.  相似文献   

15.
3'-NH2-BV-dUrd, the 3'-amino derivative of (E)-5-(2-bromovinyl)-2'-deoxyuridine, was found to be a potent and selective inhibitor of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV) replication. 3'-NH2-BV-dUrd was about 4-12 times less potent but equally selective in its anti-herpes activity as BV-dUrd. Akin to BV-dUrd, 3'-NH2-BV-dUrd was much less inhibitory to herpes simplex virus type 2 than type 1. It was totally inactive against a thymidine kinase-deficient mutant of HSV-1. The 5'-triphosphate of 3'-NH2-BV-dUrd (3'-NH2-BV-dUTP) was evaluated for its inhibitory effects on purified herpes viral and cellular DNA polymerases. Among the DNA polymerases tested, HSV-1 DNA polymerase and DNA polymerase alpha were the most sensitive to inhibition by 3'-NH2-BV-dUTP (Ki values 0.13 and 0.10 microM, respectively). The Km/Ki ratio for DNA polymerase alpha was 47, as compared with 4.6 for HSV-1 DNA polymerase. Thus, the selectivity of 3'-NH2-BV-dUrd as an anti-herpes agent cannot be ascribed to a discriminative effect of its 5'-triphosphate at the DNA polymerase level. This selectivity most probably resides at the thymidine kinase level. 3'-NH2-BV-dUrd would be phosphorylated preferentially by the HSV-1-induced thymidine kinase (Ki 1.9 microM, as compared with greater than 200 microM for the cellular thymidine kinase), and this preferential phosphorylation would confine the further action of the compound to the virus-infected cell.  相似文献   

16.
Recently thiolated oligonucleotides have attracted significant interest due to their ability to efficiently undergo stable bond formation with gold nanoparticles and surfaces to form DNA conjugates. In this respect we became interested in the synthesis of oligonucleotides that bear short thioalkyl functions located at the nucleobase. Here we present a strategy for the synthesis of DNA oligonucleotides that bear 5-(mercaptomethyl)-2'-deoxyuridine moieties. The building blocks were synthesized in a straightforward manner from thymidine. Only moderate changes of standard protocols for automated DNA synthesis are required for the generation of modified oligonucleotides containing the thiolated building blocks.  相似文献   

17.
When persistently Epstein-Barr virus (EBV)-infected lymphoblastoid (B-95-8) cells were transplanted subcutaneously or intracerebrally to nude mice of either BALB/c or NIH background, tumors developed, and the tumor cells spontaneously expressed viral capsid antigen (VCA). This model was used to evaluate the in vivo anti-EBV activity of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), a highly potent and selective antiherpes agent, which was recently shown to inhibit several parameters of EBV infection in vitro. When administered intraperitoneally at 200 mg/kg/day for 4 weeks, or 500 mg/kg/day for 2 weeks, starting immediately after B-95-8 cell inoculation, BVDU effectively reduced tumor growth and VCA expression of either subcutaneously or intracerebrally inoculated B-95-8 cells.  相似文献   

18.
19.
20.
5-(2-chloroethyl)-2'-deoxyuridine (CEDU) had been developed for the treatment of herpes simplex infections. In the Salmonella reverse mutation test, the compound was found to be mutagenic in strains TA1535 and TA102 at very high concentrations (> or =2500 micro g/plate), both with and without S9-mix. The mutagenic potential of CEDU was further investigated in vivo and in vitro. It did not induce DNA repair in rat hepatocyte primary cultures, and was negative in the micronucleus test in V79 cells and in the comet assay in human leukocytes. In vivo, CEDU was negative in the bone marrow micronucleus test in CD1 mice. The mouse spot test provided a clearly positive result. Treatment of mice on day 9 of pregnancy with 2000 mg/kg resulted in 5.9% of the F1 animals having genetically relevant spots, whereas the corresponding vehicle control group had a spot rate of 1.9%. Since these data clearly identified CEDU as an inducer of gene mutations in vivo, this potential was further investigated in lacZ transgenic Muta Mouse. Six female animals were treated daily on five consecutive days with 2000 mg/kg/day and sacrificed, after a treatment-free sampling time, 14 days later. The data showed a clear increase in the mutant frequency in the bone marrow, the lung and in the spleen. CEDU is an exception in the group of nucleoside analogues, because it was found to be a strong gene mutagen and, in contrast to the other compounds of this group investigated so far, had no considerable clastogenic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号