首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kodama Y  Shinya T  Sano H 《Biochimie》2008,90(3):547-551
Caffeine is synthesized from the precursor xanthosine through three methylation and one nucleoside removal steps. Methylation is catalyzed by N-methyltransferases, designated as CaXMT1, CaMXMT1 and CaDXMT1, which, respectively, convert xanthosine into 7-methylxanthosine, 7-methylxanthine into 3,7-dimethylxanthine, and 3,7-dimethylxanthine into 1,3,7-trimethylxanthine (caffeine). In the present study, we examined their cytological and biochemical properties using fusion proteins with fluorescent proteins. All three enzymes were found to localize in cytosol as visualized by green fluorescence protein fusions. The possibility of dimer formation among these enzyme proteins was examined in vivo by transient expression of bimolecular fluorescence complementation of yellow fluorescent protein (YFP) using onion epidermal cell layers. Results showed that each enzyme protein formed a homo-dimer in cytosol as seen by a clear reconstituted YFP fluorescence. In addition, each enzyme also formed a hetero-dimer with each of the other two enzymes in cytosol. The biological significance of dimerization among structurally resembling methyltransferases involved in caffeine biosynthesis is discussed.  相似文献   

2.
3.
The incorporation of radioactivity from L-[14CH3]-methionine into caffeine by coffee fruits was enhanced by additions of theobromine and paraxanthine but was reduced by additions of theophylline and caffeine. Cell-free extracts prepared from seedlings, partially ripe and unripe coffee fruits showed that only the unripe green fruits contained significant methyltransferase and 7-methyl-N9-nucleoside hydrolase activity. The cell-free extracts catalysed the transfer of methyl groups fromS-adenosyl-L-[14CH3]-methionine to 7-methylxanthine, and 7-methylxanthosine, producing theobromine and to theobromine producing caffeine. The two enzymic methylations exhibited a sharp pH max at 8.5 and a similar pattern of effects with metal chelators, thiol reagents and Mg2+ ions, which were slightly stimulating though not essential to enzyme activity. Paraxanthine (1,7-dimethylxanthine) was sh own to be the most active among methylxanthines as methyl acceptors; however its formation from 1-methylxanthine and 7-methylxanthine was not detectable, and biosynthesis from paraxanthine in the intact plant would therefore appear not to occur. The apparent Km values are as follows: 7-methylxanthine 0.2 mM, theobromine 0.2 mM, paraxanthine 0.07 mM and S-adenosyl-L-methionine with each substrate 0.01 mM. The results suggest the pathway for caffeine biosynthesis in Coffea arabica is: 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine.  相似文献   

4.
14C-labelled methionine, xanthosine, and 7-methylxan-thosine were given to excised tea shoots. The methyl group of methionine was incorporated into 7-methylxanthosine (ca. 10%) in the earlier period of incubation after the uptake. About 50% of the radioactivity of xanthosine was rapidly incorporated into caffeine via 7-methylxanthosine, 7-methylxanthine, and theobromine within 24 hr. 7-Methylxanthosine was also converted into caffeine at a high rate. The results suggest that the pathway for caffeine biosynthesis is as follows: xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine.  相似文献   

5.
A strain of Serratia marcescens showing the ability to degrade caffeine and other methylxanthines was isolated from soil under coffee cultivation. Growth was observed only with xanthines methylated at the 7 position (caffeine, 1,3,7-dimethylxanthine; paraxanthine, 1,7-dimethylxanthine; theobromine, 3,7-dimethylxanthine and 7-methylxanthine). Paraxanthine and theobromine were released in liquid medium when caffeine was used as the sole source of carbon and nitrogen. When paraxanthine or theobromine were used, 3-methylxanthine, 7-methylxanthine, and xanthine were detected in the liquid medium. Serratia marcescens did not grow with theophylline (1,3-dimethylxanthine), 1-methylxanthine, and 3-methylxanthine, and poor growth was observed with xanthine. Methyluric acid formation from methylxanthines was tested in cell-free extracts by measuring dehydrogenase reduction of tetrazolium salt in native-polyacrylamide gel electrophoresis gel. Activity was observed for all methylxanthines, even those with which no bacterial growth was observed. Our results suggest that in this strain of S. marcescens caffeine is degraded to theobromine (3,7-dimethylxanthine) and/or paraxanthine (1,7-dimethylxanthine), and subsequently to 7-methylxanthine and xanthine. Methyluric acid formation could not be confirmed. Correspondence to: Paulo Mazzafera.  相似文献   

6.
7.
We examined the purine alkaloid content and purine metabolism in cacao (Theobroma cacao L.) plant leaves at various ages: young small leaves (stage I), developing intermediate size leaves (stage II), fully developed leaves (stage III) from flush shoots, and aged leaves (stage IV) from 1-year-old shoots. The major purine alkaloid in stage I leaves was theobromine (4.5 μmol g–1 fresh weight), followed by caffeine (0.75 μmol g–1 fresh weight). More than 75% of purine alkaloids disappeared with subsequent leaf development (stages II–IV). In stage I leaves, 14C-labelled adenine, adenosine, guanine, guanosine, hypoxanthine and inosine were converted to salvage products (nucleotides and nucleic acids), to degradation products (ureides and CO2) and to purine alkaloids (3- and 7-methylxanthine, 7-methylxanthosine and theobromine). In contrast, 14C-labelled xanthine and xanthosine were not used for nucleotide synthesis. They were completely degraded, but nearly 20% of [8-14C]Xanthosine was converted in stage I leaves to purine alkaloids. These observations are consistent with the following biosynthetic pathways for theobromine: (a) AMP → IMP → 5′-xanthosine monophosphate → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (b) GMP → guanosine → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (c) xanthine → 3-methylxanthine → theobromine. Although no caffeine biosynthesis from 14C-labelled purine bases and nucleosides was observed during 18 h incubations, exogenously supplied [8-14C]Theobromine was converted to caffeine in young leaves. Conversion of theobromine to caffeine may, therefore, be slow in cacao leaves. No purine alkaloid synthesis was observed in the subsequent growth stages (stages II–IV). Significant degradation of purine alkaloids was found in leaves of stages II and III, in which [8-14C]Theobromine was degraded to CO2 via 3-methylxanthine, xanthine and allantoic acid. [8-14C]Caffeine was catabolised to CO2 via theophylline (1,3-dimethylxanthine) or theobromine.  相似文献   

8.
Caffeine (1,3,7-trimethylxanthine) is derived from xanthosine through three successive transfers of methyl groups and a single ribose removal in coffee plants. The methyl group transfer is catalyzed by N-zmethyltransferases, xanthosine methyltransferase (XMT), 7-methylxanthine methyltransferase (MXMT) and 3,7-dimethylxanthine methyltransferase (DXMT). We previously cloned three genes encoding each of these N-methyltransferases from coffee plants, and reconstituted the final sequence of the caffeine synthetic pathway in vitro. In the present study, we simultaneously expressed these coffee genes in tobacco plants (Nicotiana tabacum), using a multiple-gene transfer method, and confirmed successful caffeine production up to 5 μg g−1 fresh weight in leaves of the resulting transgenic plants. Their effects on feeding behavior of tobacco cutworms (Spodoptera litura), which damage a wide range of crops, were then examined. Leaf disc choice test showed that caterpillars selectively fed on the wild-type control materials, or positively avoided the transgenic materials. The results suggest a novel approach to confer self-defense by producing caffeine in planta. A second generation of transgenic crops containing caffeine may save labor and agricultural costs and also mitigate the environmental load of pesticides in future.  相似文献   

9.
Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g. tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.  相似文献   

10.
The aim of this study was to investigate the S -adenosylmethionine dependent N -methyltransferase(s) (NMT) associated with the three methylation steps in the caffeine biosynthesis pathway in tea ( Camellia sinensis L.). NMT activity in cell-free preparations from young leaves was purified by anion-exchange and gel-filtration column chromatography. In both systems, a single zone of NMT activity, with broad substrate specificity was detected. The N-3 position of dimethylxanthine and monomethylxanthines was methylated more readily than N-1 while comparatively little substitution occurred at the N-7 locus. When xanthosine was used as a substrate only the N-7 position was methylated. These results indicate that a single NMT may participate in the conversion of xanthosine to caffeine. The apparent Mr of the NMT, estimated by gel filtration chromatography, was 61 000. The substrate specificity of the NMT is compatible with the operation of a xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine pathway as the main biosynthetic route to caffeine in young tea leaves. The data also indicate that the conversion of 7-methylxanthine → paraxanthine → caffeine may function as one of a number of minor pathways that also contribute to the production of caffeine.  相似文献   

11.
The aim of this study was to investigate the S -adenosylmethionine dependent N -methyltransferase(s) (NMT) associated with the three methylation steps in the caffeine biosynthesis pathway in tea ( Camellia sinensis L.). NMT activity in cell-free preparations from young leaves was purified by anion-exchange and gel-filtration column chromatography. In both systems, a single zone of NMT activity, with broad substrate specificity was detected. The N-3 position of dimethylxanthine and monomethylxanthines was methylated more readily than N-1 while comparatively little substitution occurred at the N-7 locus. When xanthosine was used as a substrate only the N-7 position was methylated. These results indicate that a single NMT may participate in the conversion of xanthosine to caffeine. The apparent Mr of the NMT, estimated by gel filtration chromatography, was 61 000. The substrate specificity of the NMT is compatible with the operation of a xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine pathway as the main biosynthetic route to caffeine in young tea leaves. The data also indicate that the conversion of 7-methylxanthine → paraxanthine → caffeine may function as one of a number of minor pathways that also contribute to the production of caffeine.  相似文献   

12.
Caffeine (1,3,7-trimethylxanthine) is a secondary metabolite produced by certain plant species and an important component of coffee (Coffea arabica and Coffea canephora) and tea (Camellia sinensis). Here we describe the structures of two S-adenosyl-l-methionine-dependent N-methyltransferases that mediate caffeine biosynthesis in C. canephora 'robusta', xanthosine (XR) methyltransferase (XMT), and 1,7-dimethylxanthine methyltransferase (DXMT). Both were cocrystallized with the demethylated cofactor, S-adenosyl-L-cysteine, and substrate, either xanthosine or theobromine. Our structures reveal several elements that appear critical for substrate selectivity. Serine-316 in XMT appears central to the recognition of XR. Likewise, a change from glutamine-161 in XMT to histidine-160 in DXMT is likely to have catalytic consequences. A phenylalanine-266 to isoleucine-266 change in DXMT is also likely to be crucial for the discrimination between mono and dimethyl transferases in coffee. These key residues are probably functionally important and will guide future studies with implications for the biosynthesis of caffeine and its derivatives in plants.  相似文献   

13.
Biosynthesis of Caffeine in Leaves of Coffee   总被引:6,自引:0,他引:6       下载免费PDF全文
The levels of endogenous caffeine and theobromine were much higher in buds and young leaves of Coffea arabica L. cv Kent than in fully developed leaves. Biosynthesis of caffeine from 14C-labeled adenine, guanine, xanthosine, and theobromine was observed, whereas other studies (H. Ashihara, A.M. Monteiro, T. Moritz, F.M. Gillies, A. Crozier [1996] Planta 198: 334-339) have indicated that there is no detectable incorporation of label into caffeine when theophylline and xanthine are used as substrates for in vivo feeds with leaves of C. arabica. The capacity for caffeine biosynthesis, especially from guanine and xanthosine, was reduced markedly in both fully developed mature and aged leaves. Data obtained in pulse-chase experiments with young leaves indicate the operation of an AMP -> IMP -> xanthosine 5[prime]-monophosphate (or GMP -> guanosine) -> xanthosine -> 7-methylxanthosine -> 7-methylxanthine -> theobromine -> caffeine pathway. The data obtained provide strong evidence against proposals by G.M. Nazario and C.J. Lovatt ([1993] Plant Physiol 103: 1203-1210) concerning the independence of caffeine and theobromine biosynthesis pathways and the role of xanthine as a key intermediate in caffeine biosynthesis.  相似文献   

14.
1) A bacterium capable of growing aerobically with caffeine (1,3,7-trimethylxanthine) as sole source of carbon and nitrogen was isolated from soil. The morphological and physiological characteristics of the bacterium were examined. The organism was identified as a strain of Pseudomonas putida and is referred to as Pseudomonas putida C1. 15 additional caffeine-degrading bacteria were isolated, and all of them were also identified as Pseudomonas putida strains. The properties of the isolates are discussed in comparison with 6 Pseudomonas putida strains of the American Type Culture Collection. 2) The degradation of caffeine by Pseudomonas putida C1 was investigated; the following 14 metabolites were identified: 3,7-dimethylxanthine (theobromine), 1,7-dimethylxanthine, 7-methylxanthine, xanthine, 3,7-dimethyluric acid, 1,7-dimethyluric acid, 7-methyluric acid, uric acid, allantoin, allantoic acid, ureidoglycolic acid, glyoxylic acid, urea, and formaldehyde. Formaldehyde has been demonstrated to be the product of oxidative N-demethylation mediated by an inducible demethylase. A pathway of caffeine degradation is proposed.  相似文献   

15.
Leaf disks of Coffea arabica were infiltrated simultaneously with L-methionine-(methyl-14C) and with various possible precursors of caffeine biosynthesis. The results permit the identification of theobromine, 7-methylxanthine and 7-methylxanthosine as precursors of caffeine. 7-methylguanosine seems not to be an intermediate in caffeine formation.  相似文献   

16.
17.
Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives.  相似文献   

18.
Purification and characterization of caffeine synthase from tea leaves.   总被引:17,自引:0,他引:17  
Caffeine synthase (CS), the S-adenosylmethionine-dependent N-methyltransferase involved in the last two steps of caffeine biosynthesis, was extracted from young tea (Camellia sinensis) leaves; the CS was purified 520-fold to apparent homogeneity and a final specific activity of 5.7 nkat mg-1 protein by ammonium sulfate fractionation and hydroxyapatite, anion-exchange, adenosine-agarose, and gel-filtration chromatography. The native enzyme was monomeric with an apparent molecular mass of 61 kD as estimated by gel-filtration chromatography and 41 kD as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme displayed a sharp pH optimum of 8.5. The final preparation exhibited 3- and 1-N-methyltransferase activity with a broad substrate specificity, showing high activity toward paraxanthine, 7-methylxanthine, and theobromine and low activity with 3-methylxanthine and 1-methylxanthine. However, the enzyme had no 7-N-methyltransferase activity toward xanthosine and xanthosine 5'-monophosphate. The Km values of CS for paraxanthine, theobromine, 7-methylxanthine, and S-adenosylmethionine were 24, 186, 344, and 21 microM, respectively. The possible role and regulation of CS in purine alkaloid biosynthesis in tea leaves are discussed. The 20-amino acid N-terminal sequence for CS showed little homology with other methyltransferases.  相似文献   

19.
1. Extracts prepared from tea leaves with Polyclar AT (insoluble polyvinylpyrrolidine) contained two methyltransferase activities catalysing the transfer of methyl groups from S-adenosylmethionine to 7-methylxanthine, producing theobromine, and to theobromine, producing caffeine. 2. The methyltransferases exhibited the same pH optimum (8.4) and a similar pattern of effects by metal ions, thiol inhibitors and metal-chelating reagents, both for theobromine and caffeine synthesis. Mg2+, Mn2+ and Ca2+ slightly stimulated enzyme activity but they were not essential. Paraxanthine was shown to be most active among methylxanthines, as the methyl acceptor. However, the formation of paraxanthine from 1-methylxanthine was very low and that from 7-methylxanthine was nil, suggesting that the synthesis of caffeine from paraxanthine is of little importance in intact plants. Xanthine, xanthosine, XMP and hypoxanthine were all inactive as methyl acceptors, whereas [2(-14)C]xanthine and [8(-14)C]hypoxanthine were catabolized to allantoin and urea by tea-leaf extracts. The apparent Km values are as follows: 7-methylxanthine, 1.0 times 10(-14)M; theobromine, 1.0 times 10(-3)M; paraxanthine, 0.2 times 10(-3)M; S-adenosylmethionine, 0.25 times 10(-4)M (with each of the three substrates). 3. The results suggest that the pathway for caffeine biosynthesis is as follows: 7-methylxanthine leads to theobromine leads to caffeine. In contrast, it is suggested that theophylline is synthesized from 1-methylxanthine. The methyl groups of the purine ring of caffeine are all derived directly from the methyl group of S-adenosylmethionine. Little is known about the pathways leading to the formation of 7-methylxanthine. 4. A good correlation between caffeine synthesis and shoot formation or growth of tea seedlings was shown, suggesting that the methylating systems in caffeine synthesis are closely associated with purine nucleotide and nucleic acid metabolism in tea plants.  相似文献   

20.
The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N(1)- and N(3)-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His(6) fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His(6) plus His(6)-NdmD catalyzed N(1)-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His(6) plus His(6)-NdmD catalyzed N(3)-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N(7)-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号