首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes.  相似文献   

3.
Brown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of "beige" cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but, like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we provide evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes. These data provide a foundation for studying this mammalian cell type with therapeutic potential. PAPERCLIP:  相似文献   

4.
The lysosomal protease cathepsin D increased markedly in brown adipocytes during differentiation in primary cultures. Differentiated cells had 20 times the amount of immunoreactive cathepsin D found in preadipocytes. Cathepsin D mRNA, as estimated by relative RT-PCR, was also present in higher amounts in differentiated brown fat cells. Cathepsin D expression was not influenced by repeated exposures of brown adipocytes to norepinephrine (NE). Cathepsin D levels were also unchanged when NE was withdrawn for 48 h after cells had been exposed to NE for 7 days. In contrast, exposure of the cells to NE for 7 days increased their UCP1 content by more than twofold, which returned to basal levels within 48 h of withholding NE. The half-life of UCP1 under basal conditions and in cells chronically exposed to NE was estimated from reductions in [35S]methionine-labelled immunoprecipitable UCP1 over 72 h. UCP1 t1/2 under basal conditions was 3.7+/-0.4 days, which was similar to the half-lives of labelled mitochondrial translation products (3.6+/-0.8 days). The turnover rates of both UCP1 and mitochondrial translation products were reduced by NE. The turnover rate of UCP1 in the presence or absence of NE cannot account solely for the rapid loss of UCP1 from brown adipocytes upon withdrawal of NE. This loss was reduced when cells were incubated with inhibitors of phosphatidylinositol 3-kinases (PI 3-kinase), previously shown to block formation of autophagic vacuoles. Thus, brown adipocytes acquire a large capacity for both uncoupled metabolism and for lysosomal proteolysis during differentiation. Withdrawal of NE, as often occurs in vivo from suppression of sympathetic nervous system activity, would not only terminate thermogenesis but also favor formation of autophagic vacuoles to rapidly reduce the cell content of UCP1-containing mitochondria.  相似文献   

5.
Uncoupling protein 1 (UCP1), the mammalian thermogenic mitochondrial protein, is found only in brown adipocytes, but its expression by immunohistochemistry is not homogeneous. Here we present evidence that the non-homogeneous pattern of immunostaining for UCP1 (referred to as the "Harlequin phenomenon") is particularly evident after acute and chronic cold (4C) stimulus and after administration of a specific beta(3)-adrenoceptor agonist (CL316,243). Accordingly, mRNA in situ expression confirmed the UCP1 non-homogeneous pattern of gene activation under conditions of adrenergic stimulus. Furthermore, morphometric analysis of immunogold-stained thin sections showed that UCP1-gold particle density was different among neighboring brown adipocytes with mitochondria of the same size and density. When the adrenergic stimulus was reduced in warm-acclimated animals (28C), UCP1 protein and mRNA expression was reduced and consequently the Harlequin phenomenon was barely visible. These data suggest the existence of an alternative and controlled functional recruitment of brown adipocytes in acute adrenergically stressed animals, possibly to avoid heat and metabolic damage in thermogenically active cells. Of note, the heat shock protein heme oxygenase 1 (HO1) is heterogeneously expressed in adrenergically stimulated brown adipose tissue and, specifically, cells expressing strong immunoreactivity for UCP1 also strongly express HO1.  相似文献   

6.
We have examined whether a qualitative switch occurs in the response of the ribonucleotide reductase (RNR) genes to the effect of the physiological cAMP-elevating agent norepinephrine (NE) during the development of brown adipocytes. Basal expression of the genes for both RNR subunits, R1 and R2, was high in proliferating cells, but was markedly down-regulated in parallel with adipocyte differentiation. NE stimulation, which promotes DNA synthesis and proliferation of brown preadipocytes, resulted in an increased expression of the R2 gene in proliferating cells (1.6-fold), but was without effect on R1 expression. In contrast, NE stimulation of confluent differentiating brown adipocytes reduced both R1 and R2 expression. The NE stimulation of R2 expression in preadipocytes was mimicked by forskolin and abolished by H89, demonstrating mediation via cAMP and protein kinase A (PKA). Also, inhibitors of Src and of Erk1/2 kinases markedly reduced NE-stimulated R2 expression. We conclude that adrenergic stimulation of brown adipocytes by NE specifically elevates expression of the RNR subunit R2 gene in the proliferative stage of brown adipocyte development, the mediating pathway being a cAMP/PKA cascade further involving Src and the MAP kinase Erk1/2. These results suggest that adrenergic stimulation of brown adipocyte proliferation may act at the level of gene expression of the limiting subunit for RNR activity, R2, and demonstrate a qualitative switch in the response of the R2 gene to cAMP-elevating agents as a consequence of the switch from proliferating to differentiating cell status.  相似文献   

7.
8.
Although it has generally been assumed that protein kinase A (PKA) is essential for brown adipose tissue function, this has not as yet been clearly demonstrated. H89, an inhibitor of PKA, was used here to inhibit PKA activity. In cell extracts, it was confirmed that norepinephrine stimulated PKA activity, which was abolished by H89 treatment. In isolated brown adipocytes, H89 inhibited adrenergically induced thermogenesis (with an IC(50) of approx. 40 microM), and in cultured cells, adrenergically stimulated expression of the uncoupling protein-1 (UCP1) gene was abolished by H89 (full inhibition with 50 microM). However, H89 has been reported to be an adrenergic antagonist on beta(1)/beta(2)-adrenoceptors (AR). Although adrenergic stimulation of thermogenesis and UCP1 gene expression are mediated via beta(3)-ARs, it was deemed necessary to investigate whether H89 also had antagonistic potency on beta(3)-ARs. It was found that EC(50) values for beta(3)-AR-selective stimulation of cAMP production (with BRL-37344) in brown adipose tissue membrane fractions and in intact cells were not affected by H89. Similarly, the EC(50) of adrenergically stimulated oxygen consumption was not affected by H89. As H89 also abolished forskolin-induced UCP1 gene expression, and potentiated selective beta(3)-AR-induced cAMP production, H89 must be active downstream of cAMP. Thus, no antagonism of H89 on beta(3)-ARs could be detected. We conclude that H89 can be used as a pharmacological tool for elucidation of the involvement of PKA in cellular signalling processes regulated via beta(3)-ARs, and that the results are concordant with adrenergic stimulation of thermogenesis and UCP1 gene expression in brown adipocytes being mediated via a PKA-dependent pathway.  相似文献   

9.
We have examined the uncoupling (UCP) protein gene expression in euthyroid and hypothyroid rats. UCP mRNA levels were estimated by northern blot analysis of total RNA from brown adipose tissue (BAT). Stimuli were endogenous (cold) and exogenous norepinephrine (NE), isoproterenol, T3, and T4. While the euthyroid rats UCP mRNA levels increase 2- to 3-fold by 2 h after NE or overnight cold exposure, these stimuli and isoproterenol are ineffective in hypothyroid rats. One single dose of T4, equal to the daily production rate, brings about a normal response in hypothyroid rats exposed to cold overnight. Hypothyroid rats recover their responsiveness to NE approximately 4 h after a receptor saturating dose of T3. On the other hand, such a dose of T3 induces a 3- to 4-fold increase in UCP mRNA levels in hypothyroid rats without the need of exogenous NE, and this response is not reduced by raising ambient temperature to thermoneutrality (28 C). However, the following evidence indicates that T3 requires adrenergic input to stimulate the accumulation of UCP mRNA: first, euthyroid animals maintained at 28 C do not respond to such a treatment. Second, when T3 was injected to hypothyroid rats with unilaterally denervated BAT, only the intact side responded to T3 with an elevation of the UCP mRNA levels, but both sides remained responsive to T3 + NE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The objective of this study was to evaluate some of the mechanisms by which norepinephrine (NE) and insulin may influence protein degradation in mouse brown adipocytes differentiated in cultures. The effects of NE and insulin, alone or in combination, on three factors known to influence proteolysis (maintenance of cell ATP and 1-phosphatidylinositol 3-kinase (PI 3-kinase) and p70 ribosomal S6-kinase (p70 S6K) activities) were examined. It was proposed that NE affects proteolysis indirectly by decreasing cell ATP from activation of uncoupling protein-1 (UCP1)-dependent mitochondrial respiration. This was tested by comparing the effects of NE and fatty acids (which directly activate UCP1) on proteolysis in brown adipocytes, as well as in pre-adipocytes and 3T3-L1 adipocytes, which do not express UCP1. An inhibitory effect of insulin on proteolysis is observed in both pre-adipocytes and differentiated cells, whereas NE and exogenously added fatty acids inhibit proteolysis only in brown adipocytes. There is a linear relationship between reductions in cell ATP and proteolysis in response to increasing concentrations of NE or fatty acids. PI 3-kinase activity is required for proteolysis, because two selective inhibitors (wortmannin and LY294002) reduce proteolysis in both pre-adipocytes and differentiated cells. This effect is not additive to that of NE, which suggests they affect the same proteolytic pathway. In contrast to NE, insulin increases PI 3-kinase activity and phosphorylation of p70 S6K. Rapamycin, which prevented insulin-dependent increase in phosphorylation of p70 S6K, increases proteolysis in brown adipocytes and antagonizes the inhibitory effect of insulin on proteolysis, but not the inhibitory effect of NE. Thus, insulin inhibits proteolysis via rapamycin-sensitive activation of p70 S6K, whereas the effect of NE appears largely to be a function of decreasing cell ATP content.  相似文献   

11.
White and brown adipocytes are usually located in distinct depots; however, in response to cold, brown adipocytes appear in white fat. This response is mediated by beta-adrenoceptors but there is a controversy about the subtype(s) involved. In the present study, we exposed to cold beta 3-adrenoceptor knockout mice (beta 3KO) on a C57BL/6J genetic background and measured in white adipose tissue the density of multilocular cells and the expression of the brown adipocyte marker uncoupling protein-1 (UCP1). In brown fat of beta 3KO mice, UCP1 expression levels were normal at 24 degrees C as well as after a 10-day cold exposure. Strikingly, under both conditions, in the white fat of beta 3KO mice the levels of UCP1 mRNA and protein as well as the density of multilocular cells were decreased. These results indicate that beta 3-adrenoceptors play a major role in the appearance of brown adipocytes in white fat and suggest that the brown adipocytes present in white fat differ from those in brown fat.  相似文献   

12.
《The Journal of cell biology》1993,123(6):1567-1575
Fetal rat brown adipocytes at time zero of culture constitute a population of cells of broad spectrum, as estimated by cell size, endogenous fluorescence and lipid content, and show an intrinsic mitogenic competence. They express constitutively early growth-related genes such as c-myc, c-fos, and beta-actin, tissue specific-genes such as the uncoupling protein (UCP) and the lipogenic marker malic enzyme (ME). Fetal brown adipocytes bear a high expression of insulin-like growth factor receptor (IGF-IR), and show a high affinity IGF-I specific-binding to its receptor, and a high number of binding sites per cell. After cell quiescence, insulin-like growth factor I (IGF-I) was as potent as 10% FCS in inducing DNA synthesis, cell number increase, and the entry of cells into the cell-cycle. In addition, IGF- I or 10% FCS for 48 h increased the percentage of [3H]thymidine-labeled nuclei as compared to quiescent cells. Single cell autoradiographic microphotographs show typical multilocular fat droplets brown adipocytes, resulting positive to [3H]thymidine-labeled nuclei in response to IGF-I. IGF-I increased mRNA expression of the early- response genes c-fos (30 min), c-myc (2 and 24 h), and H-ras (4 and 24 h). 10% FCS also increased c-fos and c-myc, but failed to increase H- ras as an early event. IGF-I or 10% FCS, however, similarly increased the mRNA late expression of c-myc, H-ras, c-raf, beta-actin, and glucose 6-phosphate dehydrogenase (G6PD) at 72 h, as compared to quiescent cells. IGF-I or FCS maintained at 24 h or increased at 48 and 72 h UCP mRNA expression. The results demonstrate that IGF-I is a mitogen for fetal rat brown adipocytes, capable of inducing the expression of early and late growth-regulated genes, and of increasing the lipogenic marker ME and the tissue-specific gene UCP, suggesting the involvement of IGF-I in the differentiation as well as in the proliferation processes.  相似文献   

13.
Membrane responses to norepinephrine in cultured brown fat cells   总被引:2,自引:0,他引:2       下载免费PDF全文
We used the "perforated-patch" technique (Horn, R., and A. Marty, 1988. Journal of General Physiology. 92:145-159) to examine the effects of adrenergic agonists on the membrane potentials and membrane currents in isolated cultured brown fat cells from neonatal rats. In contrast to our previous results using traditional whole-cell patch clamp, 1-23-d cultured brown fat cells clamped with the perforated patch consistently showed vigorous membrane responses to both alpha- and beta-adrenergic agonists, suggesting that cytoplasmic components essential for the thermogenic response are lost in whole-cell experiments. The membrane responses to adrenergic stimulation varied from cell to cell but were consistent for a given cell. Responses to bath-applied norepinephrine in voltage-clamped cells had three possible components: (a) a fast transient inward current, (b) a slower outward current carried by K+ that often oscillated in amplitude, and (c) a sustained inward current largely by Na+. The fast inward and outward currents were activated by alpha-adrenergic agonists while the slow inward current was mediated by beta-adrenergic agonists. Oscillating outward currents were the most frequently seen response to norepinephrine stimulation. Activation of this current, termed IK,NE, was independent of voltage and seemed to be carried by Ca2(+)-activated K channels since the current oscillated in amplitude at constant membrane potential and gradually decreased when the cells were bathed with calcium-free external solution. IK,NE had a novel pharmacology in that it could be blocked by 4-aminopyridine, tetraethylammonium, apamin, and charybdotoxin. Both IK,NE and the voltage-gated K channels also present in brown fat (Lucero, M. T., and P. A. Pappone, 1989a. Journal of General Physiology. 93:451-472) may play a role in maintaining cellular homeostasis in the face of the high metabolic activity involved in thermogenesis.  相似文献   

14.
15.
16.
We have performed a sequential study on the abundance of the mRNA for uncoupling protein (UCP), subunit II of cytochrome-c oxidase (COII) and lipoprotein lipase in brown adipose tissue during the fetal and postnatal periods. Moreover, we have determined whether these parameters can be modulated by ambient temperature in the early hours after birth, and at which point in development this sensitivity first appears. UCP gene expression in the fetal and neonatal period has particular features when compared with overall mitochondriogenesis (COII mRNA expression) or with the expression of lipoprotein lipase mRNA. There is a specific induction of UCP gene expression between days 18 and 19 of pregnancy followed by a specific increase of UCP gene expression in utero and a further increase after birth. The acquisition of the physiological apparatus capable of the response to UCP and lipoprotein lipase gene expression to the environmental temperature is not achieved until the last day of fetal development. This result suggests that mechanisms of beta-adrenergic modulation of gene expression in brown fat are already established at birth. From an experiment on iopanoic acid treatment of pregnant mothers, it was concluded that iodothyronine 5'-deiodinase activity is not necessary for the expression of the mRNAs for UCP, COII and lipoprotein lipase in the fetus whereas it is necessary for the acquisition of temperature sensitivity to these parameters at birth.  相似文献   

17.
18.
To examine whether cold-induced vascular endothelial growth factor (VEGF) gene expression in brown adipose tissue involved generation of hypoxic oxygen levels by thermogenic processes, we cold-exposed wild-type mice, as well as uncoupling protein-1 (UCP1)-ablated mice in which no thermogenesis in brown adipocytes can be induced. Cold exposure stimulated VEGF expression in both wild-type and UCP1-ablated mice. Unexpectedly, the effect was 3-fold higher in UCP1-ablated animals, whereas cultured brown adipocytes from both genotypes responded identically to norepinephrine stimulation. These results demonstrate that generation of low oxygen levels does not contribute to cold-induced VEGF expression in brown adipose tissue, but the results are consistent with an adrenergic regulation of expression.  相似文献   

19.
High expression of the peroxisome proliferator-activated receptor alpha (PPARalpha) differentiates brown fat from white, and is related to its high capacity of lipid oxidation. We analyzed the effects of PPARalpha activation on expression of the brown fat-specific uncoupling protein-1 (ucp-1) gene. Activators of PPARalpha increased UCP-1 mRNA levels severalfold both in primary brown adipocytes and in brown fat in vivo. Transient transfection assays indicated that the (-4551)UCP1-CAT construct, containing the 5'-regulatory region of the rat ucp-1 gene, was activated by PPARalpha co-transfection in a dose-dependent manner and this activation was potentiated by Wy 14,643 and retinoid X receptor alpha. The coactivators CBP and PPARgamma-coactivator-1 (PGC-1), which is highly expressed in brown fat, also enhanced the PPARalpha-dependent regulation of the ucp-1 gene. Deletion and point-mutation mapping analysis indicated that the PPARalpha-responsive element was located in the upstream enhancer region of the ucp-1 gene. This -2485/-2458 element bound PPARalpha and PPARgamma from brown fat nuclei. Moreover, this element behaved as a promiscuous responsive site to either PPARalpha or PPARgamma activation, and we propose that it mediates ucp-1 gene up-regulation associated with adipogenic differentiation (via PPARgamma) or in coordination with gene expression for the fatty acid oxidation machinery required for active thermogenesis (via PPARalpha).  相似文献   

20.
The adrenergic and T3 modulation of UCP expression in non-proliferative foetal brown adipocyte primary cultures were studied. The UCP in the cultured cells was determined by immunological detection of the protein and by quantification of the mitochondrial GDP-binding. Our results showed a relative increase of 65-75% in UCP levels and 60-80% in the mitochondrial GDP-binding capacity under beta-adrenergic stimulatory conditions, while neither alpha 1-adrenergic agonists nor T3 showed an effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号