首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA of Drosophila melanogaster contains 5-methylcytosine   总被引:6,自引:0,他引:6       下载免费PDF全文
It is commonly accepted that the DNA of Drosophila melanogaster does not contain 5-methylcytosine, which is essential in the development of most eukaryotes. We have developed a new, highly specific and sensitive assay to detect the presence of 5-methylcytosine in genomic DNA. The DNA is degraded to nucleosides, 5-methylcytosine purified by HPLC and, for detection by 1D- and 2D-TLC, radiolabeled using deoxynucleoside kinase and [gamma-(32)P]ATP. Using this assay, we show here that 5-methylcytosine occurs in the DNA of D. melanogaster at a level of approximately 1 in 1000-2000 cytosine residues in adult flies. DNA methylation is detectable in all stages of D.melanogaster development.  相似文献   

2.
A high-performance liquid chromatographic method to separate five major bases (cytosine, thymine, guanine, adenine, and uracil) and three minor methylated bases (5-methylcytosine, N6-methyladenine, and 7-methylguanine) has been developed using a volatile mobile phase under isocratic conditions. It is extended to quantitate 5-methylcytosine in trace amounts (1 in 20,000 cytosine residues). The suitability of the method has been verified by estimating 5-methylcytosine in DNAs of phi X174 and pBR322. The method has been applied to quantitate the extent of cytosine methylation in DNA of larval silk glands of Bombyx mori. Our results confirm that the pupal DNA of Drosophila melanogaster does not contain detectable amounts of 5-methylcytosine.  相似文献   

3.
The genome of Drosophila melanogaster contains methylated cytosines. Recent studies indicate that DNA methylation in the fruit fly depends on one DNA methyltransferase, dDNMT2. No obvious phenotype is associated with the downregulation of this DNA methyltransferase. Thus, identifying the target sequences methylated by dDNMT2 may constitute the first step towards understanding the biological functions of this enzyme. We used anti-5-methylcytosine antibodies as affinity column to identify the methylated sequences in the genome of adult flies. Our analysis demonstrates that components of retrotransposons and repetitive DNA sequences are putative substrates for dDNMT2. The methylation status of DNA encoding Gag, a protein involved in delivering the transposition template to its DNA target, was confirmed by sodium bisulfite sequencing.  相似文献   

4.
A method for analyzing 5-methylcytosine in DNA by gas chromatography is described. The method is based on degradation of the DNA to its free bases by treatment with trifluoroacetic acid and gas chromatography of the trimethylsilyl derivatives of the free bases. Chromatography of microgram amounts of derivatized material is conducted at isothermal conditions using a 3% SE-30 or 2% OV-225 column. The peak areas corresponding to cytosine and 5-methylcytosine are used to calculate the 5-methylcytosine/cytosine molar ratio in DNA. The lower limit for detection of 5-methylcytosine in DNA by this method is a 5-methylcytosine/cytosine molar ratio of 0.001.  相似文献   

5.
The idea of modifying DNA with bisulfite has paved the way for a variety of polymerase chain reaction (PCR) methods for accurately mapping 5-methylcytosine at specific genes. Bisulfite selectively deaminates cytosine to uracil under conditions where 5-methylcytosine remains unreacted. Following conventional PCR amplification of bisulfite-treated DNA, original cytosines appear as thymine while 5-methylcytosines appear as cytosine. Because the relative thermostability of a DNA duplex increases with increasing content of G:C base pairs, PCR products originating from DNA templates with different contents of 5-methylcytosine differ in melting temperature, i.e., the temperature required to convert the double helix into random coils. We describe two methods that resolve differentially methylated DNA sequences on the basis of differences in melting temperature. The first method integrates PCR amplification of bisulfite-treated DNA and subsequent melting analysis by using a thermal cycler coupled with a fluorometer. By including in the reaction a PCR-compatible, fluorescent dye that specifically binds to double-stranded DNA, the melting properties of the PCR product can be examined directly in the PCR tube by continuous fluorescence monitoring during a temperature transition. The second method relies on resolution of alleles with different 5-methylcytosine contents by analysis of PCR products in a polyacrylamide gel containing a gradient of chemical denaturants. Optimal resolution of differences in melting temperature is achieved by a special design of PCR primers. Both methods allow resolution of "heterogeneous" methylation, i.e., the situation where the content and distribution of 5-methylcytosine in a target gene differ between different molecules in the same sample.  相似文献   

6.
To examine the distribution of 5-methylcytosine in chromatin DNA, DNA of HeLa cells was labeled with [3H-methyl]methionine and [14C] thymidine and analyzed after extensive digestion of the nuclei with micrococcal nuclease. When the chromatin solubilized with the nuclease was fractionated on a sucrose density gradient, DNA in mononucleosomes was considerably depleted in 5-methylcytosine, as compared with polynucleosomes. Electrophoretic separation of DNA from the chromatin also revealed the depletion of 5-methylcytosine in the mononucleosomal size of DNA. This was confirmed by the chromatographic analysis of 5-methyldeoxycytidine after enzymatic digestion of the DNA to nucleosides. Thus the DNA in mononucleosomes solubilized by extensive micrococcal nuclease digestion is depleted in 5-methylcytosine, suggesting that 5-methylcytosine is preferentially missing from the DNA in the nucleosome core particles.  相似文献   

7.
DNA 5-methylcytosine is a major factor in the silencing of mammalian genes; it is involved in gene expression, differentiation, embryogenesis and neoplastic transformation. A decrease in DNA 5-methylcytosine content is associated with activation of specific genes. There is much evidence indicating this to be an enzymic process, with replacement of 5-methylcytosine by cytosine. We demonstrate here enzymic release of 5-methylcytosines from DNA by a human 5-methylcytosine-DNA glycosylase activity, which affords a possible mechanism for such replacement. This activity generates promutagenic apyrimidinic sites, which can be related to the high frequency of mutations found at DNA 5-methylcytosine loci. The recovery of most released pyrimidines as thymines indicates subsequent deamination of free 5-methylcytosines by a 5-methylcytosine deaminase activity. This prevents possible recycling of 5-methylcytosine into replicative DNA synthesis via a possible 5-methyl-dCTP intermediate synthesized through the pyrimidine salvage pathway. Taken together, these findings indicate mechanisms for removal of 5-methylcytosines from DNA, hypermutability of DNA 5-methylcytosine sites, and exclusion of 5-methylcytosines from DNA during replication.  相似文献   

8.
In Escherichia coli, cytosine DNA methylation is catalyzed by the DNA cytosine methyltransferase (Dcm) protein and occurs at the second cytosine in the sequence 5'CCWGG3'. Although the presence of cytosine DNA methylation was reported over 35?years ago, the biological role of 5-methylcytosine in E.?coli remains unclear. To gain insight into the role of cytosine DNA methylation in E.?coli, we (1) screened the 72 strains of the ECOR collection and 90 recently isolated environmental samples for the presence of the full-length dcm gene using the polymerase chain reaction; (2) examined the same strains for the presence of 5-methylcytosine at 5'CCWGG3' sites using a restriction enzyme isoschizomer digestion assay; and (3) quantified the levels of 5-methyl-2'-deoxycytidine in selected strains using liquid chromatography tandem mass spectrometry. Dcm-mediated cytosine DNA methylation is conserved in all 162 strains examined, and the level of 5-methylcytosine ranges from 0.86% to 1.30% of the cytosines. We also demonstrate that Dcm reduces the expression of ribosomal protein genes during stationary phase, and this may explain the highly conserved nature of this DNA modification pathway.  相似文献   

9.
DNA from Aspergillus sp. has been reported not to contain 5-methylcytosine. However, it has been found that Aspergillus nidulans responds to 5-azacytidine, a drug that is a strong inhibitor of DNA methyltransferases. Therefore, we have re-examined the occurrence of 5-methylcytosine in DNA from Aspergillus flavus by using a highly sensitive and specific method for detection of modified bases in genomic DNA comprising high-performance liquid chromatography separation of nucleosides, labeling of the nucleoside with deoxynucleoside kinase and two-dimensional thin-layer chromatography. Our results show that 5-methylcytosine is present in DNA from A. flavus. We estimate the relative amounts of 5-methylcytosine to cytosine to be approximately 1/400.  相似文献   

10.
11.
The in vitro radiolabeled methyl incorporation assay, a commonly used technique to evaluate global methylation of DNA, has some disadvantages and limitations. The purpose of the present study was to compare the results of global DNA methylation evaluated by radiolabeled methyl incorporation (CPM/μg of DNA) with immunohistochemical staining of the same tissue sections with a monoclonal antibody developed against 5-methylcytosine (5-mc). We used archival specimens of squamous cell cancer (SCC) of the human lung with a matched uninvolved specimen (n = 18 pairs) and 18 lung specimens from subjects without lung cancer (noncancer specimens) to make this comparison. The immunostaining for 5-mc was reported as a percentage of cells positive for staining as well as a weighted average of the intensity score. The results suggested that both radiolabeled methyl incorporation assay and immunostaining for 5-mc can be used to demonstrate hypomethylation of DNA in SCC tissues compared to matched uninvolved tissues. An advantage of immunostaining, however, is its ability to demonstrate hypomethylation of SCC compared to adjacent bronchial mucosa on the same archival specimen, obviating the need to use sections from both SCC and matched uninvolved tissues. Only by using the immunostaining technique were we able to document a statistically significant difference in DNA methylation between SCC and noncancer tissues. We conclude that the immunostaining technique has advantages over the radiolabeled methyl incorporation assay and may be best suited for evaluation of global DNA methylation when the methylation status of cancer cannot be normalized by methyl incorporation of normal tissues or when the number of samples available for evaluation is small.  相似文献   

12.
The in vitro radiolabeled methyl incorporation assay, a commonly used technique to evaluate global methylation of DNA, has some disadvantages and limitations. The purpose of the present study was to compare the results of global DNA methylation evaluated by radiolabeled methyl incorporation (CPM/μg of DNA) with immunohistochemical staining of the same tissue sections with a monoclonal antibody developed against 5-methylcytosine (5-mc). We used archival specimens of squamous cell cancer (SCC) of the human lung with a matched uninvolved specimen (n = 18 pairs) and 18 lung specimens from subjects without lung cancer (noncancer specimens) to make this comparison. The immunostaining for 5-mc was reported as a percentage of cells positive for staining as well as a weighted average of the intensity score. The results suggested that both radiolabeled methyl incorporation assay and immunostaining for 5-mc can be used to demonstrate hypomethylation of DNA in SCC tissues compared to matched uninvolved tissues. An advantage of immunostaining, however, is its ability to demonstrate hypomethylation of SCC compared to adjacent bronchial mucosa on the same archival specimen, obviating the need to use sections from both SCC and matched uninvolved tissues. Only by using the immunostaining technique were we able to document a statistically significant difference in DNA methylation between SCC and noncancer tissues. We conclude that the immunostaining technique has advantages over the radiolabeled methyl incorporation assay and may be best suited for evaluation of global DNA methylation when the methylation status of cancer cannot be normalized by methyl incorporation of normal tissues or when the number of samples available for evaluation is small.  相似文献   

13.
The use of permanganate as a reagent for DNA sequencing by chemical degradation has been studied with respect to its specificity for 5-methylcytosine residues. At weakly acidic pH and room temperature, 0.2 mM potassium permanganate reacts preferentially with thymine, 5-methylcytosine, and to a lesser extent with purine residues, while cytosine remains essentially intact. Permanganate oxidation is, therefore, a suitable DNA sequencing reaction for positive discrimination between 5-methylcytosine and unmethylated cytosine.  相似文献   

14.
Mycoplasma bacteriophage L51 single-stranded DNA and L2 double-stranded DNA are host cell modified and restricted when they transfect Acholeplasma laidlawii JA1 and K2 cells. The L51 genome has a single restriction endonuclease MboI site (recognition sequence GATC), which contains 5-methylcytosine when the DNA is isolated from L51 phage grown in K2 cells but is unmethylated when the DNA is from phage grown in JA1 cells. This GATC sequence is nonessential, since an L51 mutant in which the MboI site was deleted was still viable. DNA from this deletion mutant phage was not restricted during transfection of either strain K2 or JA1. Therefore, strain K2 restricts DNA containing the sequence GATC, and strain JA1 restricts DNA containing the sequence GAT 5-methylcytosine. We conclude that K2 cells have a restriction system specific for DNA containing the sequence GATC and protect their DNA by methylating cytosine in this sequence. In contrast, JA1 cells (which contain no methylated DNA bases) have a newly discovered type of restriction-modification system. From results of studies of the restriction of specifically methylated DNAs, we conclude that JA1 cells restrict DNA containing 5-methylcytosine, regardless of the nucleotide sequence containing 5-methylcytosine. This is the first report of a DNA restriction activity specific for a single (methylated) base. Modification in this system is the absence of cytosine methylating activity. A restriction-deficient variant of strain JA1, which retains the JA1 modification phenotype, was isolated, indicating that JA1 cells have a gene product with restriction specificity for DNA containing 5-methylcytosine.  相似文献   

15.
It is controversial whether DNA methylation plays a functional role in Drosophila. We have studied testis DNA of Drosophila melanogaster Meigen, 1830 with antisera against 5-methylcytosine (5mC) and found no evidence for the presence of significant amounts of 5mC. Reactions occur only with 1 of 3 5mC antisera, but they are restricted to nuclear regions without detectable amounts of DNA. The antisera apparently cross-react with other nuclear components. If the murine de novo DNA methyltransferases, DNMT3A and DNMT3B, are expressed under the control of the spermatocyte-specific beta2-tubulin promoter in testes, DNA methylation is not increased and no effects on the fertility of the fly are seen. DNA methylation has, therefore, no functional relevance in the male germ line of Drosophila.  相似文献   

16.
Methylation of cytosine residues in DNA plays a critical role in the silencing of gene expression, organization of chromatin structure, and cellular differentiation of eukaryotes. Previous studies failed to detect 5-methylcytosine in Dictyostelium genomic DNA, but the recent sequencing of the Dictyostelium genome revealed a candidate DNA methyltransferase gene (dnmA). The genome sequence also uncovered an unusual distribution of potential methylation sites, CpG islands, throughout the genome. DnmA belongs to the Dnmt2 subfamily and contains all the catalytic motifs necessary for cytosine methyltransferases. Dnmt2 activity is typically weak in Drosophila melanogaster, mouse, and human cells and the gene function in these systems is unknown. We have investigated the methylation status of Dictyostelium genomic DNA with antibodies raised against 5-methylcytosine and detected low levels of the modified nucleotide. We also found that DNA methylation increased during development. We searched the genome for potential methylation sites and found them in retrotransposable elements and in several other genes. Using Southern blot analysis with methylation-sensitive and -insensitive restriction endonucleases, we found that the DIRS retrotransposon and the guaB gene were indeed methylated. We then mutated the dnmA gene and found that DNA methylation was reduced to about 50% of the wild-type level. The mutant cells exhibited morphological defects in late development, indicating that DNA methylation has a regulatory role in Dictyostelium development. Our findings establish a role for a Dnmt2 methyltransferase in eukaryotic development.  相似文献   

17.
Quantitation of 5-methylcytosine in DNA after acid hydrolysis has been inaccurate because deamination of cytosine and 5-methylcytosine occurs during the hydrolysis procedure. There is little information in the literature regarding the use of hydrofluoric acid (HF) for DNA hydrolysis and we have therefore undertaken a systematic study of this process. The deoxyribonucleotides of cytosine and 5-methylcytosine were shown not to undergo detectable levels of deamination during prolonged periods (up to 24 h) at 80 degrees C in 48% HF. Kinetic studies show that the release of purine and pyrimidine bases was complete by 4 h under these conditions. Analysis of the 5-methylcytosine content of DNA from various tissues gave levels that were very close to the values reported in the literature. This method is ideally suited for the determination of the overall cytosine methylation levels in DNA.  相似文献   

18.
DNA methylation is an important biological process that programmes gene expression in vertebrates. The methylation pattern is generated by a combination of methylation and demethylation reactions catalyzed by DNA methyltransferases and putative demethylases. MBD2 binds methylated DNA and possesses DNA demethylase activity. We use here direct analysis of the reaction mixture by GC-MS using a water-tolerant gas chromatographic column to avoid the loss of potential volatile products and identify the leaving residue of the demethylation reaction. We show that the DNA demethylase reaction catalyzed by a recombinant human MBD2 purified from SF9 insect cells releases dideuteroformaldehyde from [Me-(2)H(3)]-5-methylcytosine in DNA. A mechanism of the DNA demethylation reaction is proposed based on this observation.  相似文献   

19.
The ultrastructural histochemical localization of acid phosphatase in salivary glands of third instar larvae of Drosophila melanogaster has been studied. Using Gomori's lead phosphate method for acid phosphatase detection, the optimal incubation time in the reaction medium was determined to be 30 min. When glands having wild-type acid phosphatase activity are incubated for this time, deposition of the final reaction product is observed in essentially every lysosome and artifactual staining is minimal.  相似文献   

20.
Direct detection of methylation in genomic DNA   总被引:2,自引:0,他引:2  
The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N6-methyladenine, 5-methylcytosine and N4-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N6-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N4-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号