首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell surface expression of the dopamine transporter (DAT) is determined by the relative rates of its internalization and recycling. Changes in the cellular labile iron pool (LIP) affect many cellular mechanisms including those that regulate DAT trafficking. In this study, we analyzed DAT expression and posttranslational modifications in response to changes in cellular iron in transfected neuroblastoma cells (N2a). Iron chelation by desferrioxamine (DFO) altered DAT protein levels by decreasing the stability of DAT mRNA. Increased phosphorylation and ubiquitination of this transporter protein following DFO treatment were also observed. Cellular iron depletion elevated protein levels of the early endosomal marker Rab5. Moreover, confocal microscopy studies showed increased localization of DAT into the endosomal compartment in DFO-treated cells compared to control. Together, these findings suggest that cellular iron depletion regulates DAT expression through reducing mRNA stability as well as an increasing in endocytosis.  相似文献   

2.
The asialoglycoprotein (ASGP) receptor on Hep G2 cells undergoes constitutive recycling and ligand endocytosis in the presence of phorbol dibutyrate, at a 50% reduced rate relative to control cells (Fallon, R. J., and Schwartz, A. L. (1986) J. Biol. Chem. 261, 15081-15089). The relevance of receptor phosphorylation to these events was investigated by selective immunoprecipitation of surface receptors with polyclonal anti-human ASGP antiserum and pulse-chase labeling with [32P]orthophosphate to identify subcellular locations of initial receptor phosphorylation events as well as the eventual fate of phosphorylated receptor during recycling. The surface immunoprecipitation method recovers greater than 95% of surface ASGP receptors and only 5% or less of intracellular (brief[35S]methionine pulse-labeled) receptors. With this assay we detected low levels of ASGP receptor phosphorylation at the cell surface in control cells (0.1 mol of P/mol of R) which were rapidly (less than 1 min) stimulated 20-fold by 400 nM phorbol dibutyrate addition (1.7 mol of P/mol of R). Staurosporine, a protein kinase C inhibitor, blocks this stimulation by phorbol. Receptor phosphorylation at early time points in the presence of phorbol esters was restricted to the plasma membrane. Subsequent chase in the presence of excess unlabeled phosphate and phorbol esters lowered [32P] ATPi specific activity by 68% at 1 h. Surface immunoprecipitation during this chase period showed the phosphorylated ASGP receptors were rapidly lost from the cell surface (t1/2 = 20 min). In contrast, examination of intracellular receptor during the pulse-chase experiment in phorbol dibutyrate-treated cells showed the presence of phosphorylated pool(s) of ASGP receptors which were detectable for 6 h of chase. Since no labeled receptor can be detected at the cell surface at this time, the described intracellular phosphorylated receptors are in a non-recycling pool.  相似文献   

3.
Human CG (hCG) consists of a common alpha-subunit and a hormone-specific beta-subunit. Similarly, its receptor is also composed of two domains, an extracellular N-terminal half (exodomain) and a membrane-associated C-terminal half (endodomain). hCG initially binds the exodomain of the receptor after which the resulting hCG/exodomain complex is thought to interact with the endodomain. This secondary interaction is considered responsible for signal generation. Despite the importance, it is unclear which hormone subunit interacts with the exodomain or the endodomain. As a step to determine the mechanisms of the initial and secondary interactions and signal generation, we investigated the interaction of the hormone-specific beta-subunit in hCG with the receptor's exodomain. A photoactivable hCG derivative consisting of the wild-type alpha-subunit and a photoactivable beta-subunit derivative was prepared and used to label the exodomain. The analysis and immunoprecipitation of photoaffinity labeled exodomain demonstrate that the beta-subunit in hCG makes the direct contact with the exodomain.  相似文献   

4.
5.
The NADPH-dependent enzymic reduction of disulfide bonds in human choriogonadotropin and its two subunits, alpha and beta, was examined with thioredoxin and thioredoxin reductase from Escherichia coli. With 12 muM thioredoxin and 0.1 muM thioredoxin reductase at pH 7 all disulfide bonds in the alpha subunit could be reduced in 15 min. The reduction of disulfide bonds was recorded by a simple spectrophotometric assay at 340 nm, which allowed quantitation of the reduction rate and the number of disulfide bonds reduced. Partial reduction of the alpha subunit with thioredoxin followed by S-carboxymethylation with iodol[2-3H]acetic acid and analysis of tryptic peptides indicated that all S-S bonds in the alpha subunit were surface oriented and equally reactive. The usefulness of thioredoxin reduction of disulfide bonds as a chemical probe of protein structure was shown by the much slower reaction of disulfide bonds in the intact hormone as compared to its two biologically inactive subunits.  相似文献   

6.
7.
By fluorescence spectroscopy, the average pH within endocytic compartments was determined during endocytosis of fluorescein conjugates by macrophages and hepatocytes. In mouse macrophages and hepatocytes fluorescein conjugates taken up either in the fluid phase or by binding to cell surface receptors were rapidly transferred to an acidic compartment (pH 5-5.5). The half-time for this process was generally less than 4 min. The pH within yeast-containing phagosomes was also rapidly reduced to similar levels, following a unique and transient increase. In each case, the acid endosomal compartments involved probably do not contain lysosomal enzymes. When fluorescein conjugates of asialoglycoproteins were internalised by hepatocytes at 20 degrees C, no proteolysis occurred within the acidic endosome until the temperature was raised. Fluorescein conjugates of concanavalin A (conA) and polylysine were relatively more slowly internalised by macrophages. The half-times for uptake, estimated by fluorescence change, were comparable with the turnover time for bulk plasma membrane. The relatively high average pH experienced by these conjugates indicated that a small proportion of these non-specific cell-surface labels was always in contact with the extracellular medium.  相似文献   

8.
The human low density lipoprotein (LDL) receptor is shown to carry out efficient receptor-mediated endocytosis in Xenopus laevis oocytes. Microinjection of mRNAs encoding the human receptor led to synthesis of a 120-kDa precursor possessing high mannose N-linked sugars and core O-linked sugars. During its transport to the cell surface, the protein increased in apparent size to 160 kDa, which is similar to the change that occurs in human cells. This increase was not seen when the receptor lacked the serine/threonine-rich region that undergoes O-linked glycosylation. The surface receptors bound 125I-LDL at 0 degrees C and internalized it with a half-time of 2 min when the cells were warmed to 19 degrees C. The rate of internalization was slowed by 7-fold when a single residue in the cytoplasmic domain (Tyr807) was changed to a cysteine, an alteration that slows incorporation into coated pits in mammalian cells. Deletion of the cytoplasmic domain abolished rapid internalization. We conclude that the signals for O-linked glycosylation and receptor-mediated endocytosis of the LDL receptor have been conserved throughout vertebrate evolution.  相似文献   

9.
10.
In rough-skinned newts, Taricha granulosa, exposure to an acute stressor results in the rapid release of corticosterone (CORT), which suppresses the ability of vasotocin (VT) to enhance clasping behavior. CORT also suppresses VT-induced spontaneous activity and sensory responsiveness of clasp-controlling neurons in the rostromedial reticular formation (Rf). The cellular mechanisms underlying this interaction remain unclear. We hypothesized that CORT blocks VT-enhanced clasping by interfering with V1a receptor availability and/or VT-induced endocytosis. We administered a physiologically active fluorescent VT conjugated to Oregon Green (VT–OG) to the fourth ventricle 9 min after an intraperitoneal injection of CORT (0, 10, 40 μg/0.1 mL amphibian Ringers). The brains were collected 30 min post-VT–OG, fixed, and imaged with confocal microscopy. CORT diminished the number of endocytosed vesicles, percent area containing VT–OG, sum intensity of VT–OG, and the amount of VT-V1a within each vesicle; indicating that CORT was interfering with V1a receptor availability and VT-V1a receptor-mediated endocytosis. CORT actions were brain location-specific and season-dependent in a manner that is consistent with the natural and context-dependent expression of clasping behavior. Furthermore, the sensitivity of the Rf to CORT was much higher in animals during the breeding season, arguing for ethologically appropriate seasonal variation in CORT's ability to prevent VT-induced endocytosis. Our data are consistent with the time course and interaction effects of CORT and VT on clasping behavior and neurophysiology. CORT interference with VT-induced endocytosis may be a common mechanism employed by hormones across taxa for mediating rapid context- and season-specific behavioral responses.  相似文献   

11.
The actin cytoskeleton is believed to contribute to the formation of clathrin-coated pits, although the specific components that connect actin filaments with the endocytic machinery are unclear. Cortactin is an F-actin-associated protein, localizes within membrane ruffles in cultured cells, and is a direct binding partner of the large GTPase dynamin. This direct interaction with a component of the endocytic machinery suggests that cortactin may participate in one or several endocytic processes. Therefore, the goal of this study was to test whether cortactin associates with clathrin-coated pits and participates in receptor-mediated endocytosis. Morphological experiments with either anti-cortactin antibodies or expressed red fluorescence protein-tagged cortactin revealed a striking colocalization of cortactin and clathrin puncta at the ventral plasma membrane. Consistent with these observations, cells microinjected with these antibodies exhibited a marked decrease in the uptake of labeled transferrin and low-density lipoprotein while internalization of the fluid marker dextran was unchanged. Cells expressing the cortactin Src homology three domain also exhibited markedly reduced endocytosis. These findings suggest that cortactin is an important component of the receptor-mediated endocytic machinery, where, together with actin and dynamin, it regulates the scission of clathrin pits from the plasma membrane. Thus, cortactin provides a direct link between the dynamic actin cytoskeleton and the membrane pinchase dynamin that supports vesicle formation during receptor-mediated endocytosis.  相似文献   

12.
Amphiphysin1, which can simultaneously bind to dynamin1 and the clathrin adaptor AP-2, is essential for dynamin1 recruitment during receptor-mediated endocytosis, but little is known about its regulatory mechanism. Here, we purified a 120-kDa mitogen-activated protein kinase (MAPK) substrate protein from porcine brains and identified the protein as amphiphysin1. Serine phosphorylation of amphiphysin1 was rapidly induced by nerve growth factor (NGF) in PC12 cells, and the induction was blocked by a MAPK inhibitor. Furthermore, when phosphorylated by MAPK in vitro or by NGF treatment in vivo, amphiphysin1 failed to bind to AP-2, but its association with dynamin1 was unaffected. Consistent with this, mutation of consensus MAPK phosphorylation sites increased amphiphysin1 binding to AP-2 and their intracellular colocalization. Thus, we propose that MAPK phosphorylation of amphiphysin1 controls NGF receptor/TrkA-mediated endocytosis by terminating the amphiphysin1-AP-2 interaction. This perhaps helps to regulate the availability of amphiphysin1-dynamin1 complexes for binding to the endocytic vesicle.  相似文献   

13.
Sphingomyelin and seven glycosphingolipids were labeled with the fluorescent probe pyrene and administered into cultured fibroblasts by receptor-mediated endocytosis. For this purpose pyrene sphingomyelin or mixtures of pyrene glycolipid and unlabeled sphingomyelin were dispersed as small, unilamellar liposomes. Apolipoprotein E was then added and the receptor for this ligand on the cell surface was utilized for uptake of the liposomes and their transport to the lysosomes, where the respective pyrene lipids were degraded. Following incubation with each of the respective pyrene lipids, only the administered compound and the pyrene ceramide were present; intermediate hydrolysis products were not detected. This indicated that, in skin fibroblasts, the lysosomal ceramidase was limiting and controlled the rate of total degradation of the pyrene sphingolipids.  相似文献   

14.
An inhibitor for lutropin receptor site binding (LH-RBI), which strongly inhibited the binding of 125I-labeled ovine lutropin ([125I]oLH) to ovarian LH receptors, did not inhibit the [125I]oLH binding to testicular LH receptors. Preincubation of the LH-RBI with [125I]oLH did not affect the binding of preincubated ]125I]oLH to ovarian LH receptors. No inhibition of [125I]oLH binding to testicular LH receptors was observed even uhen the concentration of LH-RBI was significantly increased or when the testicular LH receptors uere first incubated with LH-RBI prior to the addition of [125I]oLH and a second incubation. Scatchard analysis revealed that the dissociation constant of [125I]oLH binding was essentially the same in the presence or absence of LH-RBI. The results suggest that: (i) the lutropin receptor of ovaries, but not of testes, has a specific LH-RBI binding site in addition to the lutropin binding site, and (ii) the binding of the LH-RBI produces an "allosteric" type of inhibition to the binding of lutropin at the lutropin binding site.  相似文献   

15.
In ciliated protozoa, most nutrients are internalized via phagocytosis by food vacuole formation at the posterior end of the buccal cavity. The uptake of small-sized molecules and external fluid through the plasma membrane is a localized process. That is because most of the cell surface is internally covered by an alveolar system and a fibrous epiplasm, so that only defined areas of the cell surface are potential substance uptake sites. The purpose of this study is to analyze, by fluorescence confocal laser scanning microscopy, the relationship between WGA (Triticum vulgaris agglutinin) and dextran internalization in Paramecium primaurelia cells blocked in the phagocytic process, so that markers could not be internalized via food vacuole formation. WGA, which binds to surface constituents of fixed and living cells, was used as a marker for membrane transport and dextran as a marker for fluid phase endocytosis. After 3 min incubation, WGA-FITC is found on plasma membrane and cilia, and successively within small cytoplasmic vesicles. After a 10-15 min chase in unlabeled medium, the marked vesicles decrease in number, increase in size and fuse with food vacuoles. This fusion was evidenced by labeling food vacuoles with BSA-Texas red. Dextran enters the cell via endocytic vesicles which first localize in the cortical region, under the plasma membrane, and then migrate in the cytoplasm and fuse with other endocytic vesicles and food vacuoles. When cells are fed with WGA-FITC and dextran-Texas red at the same time, two differently labeled vesicle populations are found. Cytosol acidification and incubation in sucrose medium or in chlorpromazine showed that WGA is internalized via clathrin vesicles, whereas fluid phase endocytosis is a clathrin-independent process.  相似文献   

16.
Asialoglycoprotein receptors on hepatocytes lose endocytic and ligand binding activity when hepatocytes are exposed to iron ions. Here, we report the effects of zinc and copper ions on the endocytic and ligand binding activity of asialoglycoprotein receptors on isolated rat hepatocytes. Treatment of cells at 37 degrees C for 2 h with ZnCl2 (0-220 microM) or CuCl2 (0-225 microM) reversibly blocked sustained endocytosis of 125I-asialoorosomucoid by up to 93% (t1/2 = 62 min) and 99% (t1/2 = 54 min), respectively. Cells remained viable during such treatments. Zinc- and copper-treated cells lost approximately 50% of their surface asialoglycoprotein receptor ligand binding activity; zinc-treated cells accumulated inactive asialoglycoprotein receptors intracellularly, whereas copper-treated cells accumulated inactive receptors on their surfaces. Cells treated at 4 degrees C with metal did not lose surface asialoglycoprotein receptor activity. Exposure of cells to copper ions, but not to zinc ions, blocked internalization of prebound 125I-asialoorosomucoid, but degradation of internalized ligand and pinocytosis of the fluid-phase marker Lucifer Yellow were not blocked by metal treatment. Zinc ions reduced diferric transferrin binding and endocytosis on hepatocytes by approximately 33%; copper ions had no inhibitory effects. These findings are the first demonstration of a specific inhibition of receptor-mediated endocytosis by non-iron transition metals.  相似文献   

17.
18.
Dynamin plays a critical role in the membrane fission mechanism that mediates regulated endocytosis of many G protein-coupled receptors. In addition, dynamin is required for ligand-induced activation of mitogen-activated protein kinase by certain receptors, raising a general question about the role of dynamin in mitogenic signal transduction. Here we report that endocytosis of mu and delta opioid receptors is not required for efficient ligand-induced activation of mitogen-activated protein kinase. Nevertheless, mitogenic signaling mediated by these receptors is specifically dynamin-dependent. Thus a functional role of dynamin in mitogenic signaling can be dissociated from its role in receptor-mediated endocytosis, suggesting a previously unidentified and distinct role of dynamin in signal transduction by certain G protein-coupled receptors.  相似文献   

19.
alpha 2-Macroglobulin complexed to proteinases activated during clotting of cystic fibrosis and control sera was quantitated with the complex-specific monoclonal antibody F2B2 . Similar amounts of alpha 2-macroglobulin complexes (between 40 and 90 micrograms/ml) were generated in cystic fibrosis and control sera. Endocytosis of the complexes by normal human fibroblasts was compared to the amount of complexes detected by the F2B2 -radioimmunoassay. Normal uptake was observed with 13 out of 14 cystic fibrosis sera. One cystic fibrosis serum showed strongly reduced endocytosis of the complexes. Complexes isolated from this serum on immobilized F2B2 failed to inhibit binding of purified alpha 2-macroglobulin-trypsin to its receptor, demonstrating deficient receptor-binding of these complexes. The low uptake complexes could not be distinguished from complexes isolated from control or other cystic fibrosis sera by isoelectric focusing, rate electrophoresis or SDS-polyacrylamide gel electrophoresis.  相似文献   

20.
The porcine gene for luteinizing hormone/choriogonadotropin receptor (LHCGR) was localized to chromosome 3q2.2----q2.3 using radioactive and nonradioactive in situ hybridization. A computer-assisted image-analysis system was developed which facilitated detection of the position of silver grains and fluorescent spots on the chromosomes after in situ hybridization. Compared with autoradiographic visualization, the nonisotopic procedure proved to be more rapid, precise, and highly specific; however, nonradiographic in situ hybridization was much less efficient than the autoradiographic technique for the detection of unique DNA sequences with small probes. From these results and published gene-mapping data, it was concluded that the synteny between LHCGR and MDH1 observed in man is conserved in the pig genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号