首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The parameters of energy coupling of mitochondria isolated from the livers of hibernating and awakening gophers were studied. The ATP/ADP-antiporter inhibitor carboxyatractylate slowed down the respiration rate, increased delta psi and decreased the ionic conductivity of the inner mitochondrial membrane as measured by the rate of the delta psi decline after addition of cyanide (in the presence of oligomycin and EGTA). A similar effect was produced by BSA, carboxyatractylate being fairly ineffective in the presence of BSA. In hibernating gophers the maximal rate of the uncoupled respiration and the ionic conductivity of the inner mitochondrial membrane were markedly decreased as compared with awakening gophers. The data obtained suggest that in awakening animals fatty acids induce the uncoupling of oxidative phosphorylation by the ATP/ADP-antiporter, this process being simultaneous with the activation of the respiratory chain.  相似文献   

2.
NAD(P)H fluorescence, mitochondrial membrane potential and respiration rate were measured and manipulated in isolated liver cells from fed and starved rats in order to characterize control of mitochondrial respiration and phosphorylation. Increased mitochondrial NADH supply stimulated respiration and this accounted for most of the stimulation of respiration by vasopressin and extracellular ATP. From the response of respiration to NADH it was estimated that the control coefficient over respiration of the processes that supply mitochondrial NADH was about 0.15-0.3 in cells from fed rats. Inhibition of the ATP synthase with oligomycin increased the mitochondrial membrane potential and decreased respiration in cells from fed rats, while the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone had the opposite effect. There was a unique relationship between respiration and membrane potential irrespective of the ATP content of the cells indicating that phosphorylation potential controls respiration solely via phosphorylation (rather than by controlling NADH supply). From the response of respiration to the mitochondrial membrane potential (delta psi M) it was estimated that the control coefficients over respiration rate in cells from fed rats were: 0.29 by the processes that generate delta psi M, 0.49 by the process of ATP synthesis, transport and consumption, and 0.22 by the processes that cycle protons across the inner mitochondrial membrane other than via ATP synthesis (e.g. the passive proton leak). Control coefficients over the rate of mitochondrial ATP synthesis were 0.23, 0.84 and -0.07, respectively, by the same processes. The control distribution in cells from starved rats was similar.  相似文献   

3.
Presumptive evidence suggests that the brown fat mitochondrial uncoupling protein, thermogenin, is involved in the mechanism of stimulation of respiration by norepinephrine in the intact tissue. Conflicting data have been reported which suggest involvement of either adenine nucleotides, or fatty acids, or long chain acyl-CoA, or protons in the physiological regulation. We measured the electrical potential gradient across the mitochondrial membrane (delta psi m) in control cells and in cells stimulated with norepinephrine, using the accumulation of lipophilic cation, tetraphenylphosphonium, as an indicator of the potential gradient. The value of delta psi m in the cells in the control state is 116 mV, and in the hormonally stimulated state it is 56.6 mV. This supports the view that the protein is involved in the mechanism of hormone action. Other studies were designed to distinguish between the effects of fatty acids and ATP levels on the uncoupling protein in isolated mitochondria and in the adipocytes. ATP levels and fatty acid levels inside intact cells were independently varied using oligomycin or external fatty acids. Their effect on thermogenin was monitored as the capacity of the cells for reverse electron transport from durohydroquinone. The results suggest that ATP modulates the activity of thermogenin, while fatty acids can alter the relationship between ATP and thermogenin activity such that the protein appears to be activated at a higher cellular ATP level in the presence of fatty acids than in their absence.  相似文献   

4.
The lectin concanavalin A (Con A) acts as a mitogen that preferentially activates T-cells. It stimulates the energy metabolism of thymocytes within seconds of exposure. We studied short-term effects (<30 min) of Con A on a conceptually simplified model system of rat thymocyte energy metabolism in the concentration range of 0-2 microg Con A per 107 cells, using metabolic control analysis. The model system consisted of three blocks of reactions, linked by the common intermediate mitochondrial membrane potential (Delta[psi]m): the substrate oxidation reactions, which produce the linking intermediate, and the proton conductance (or leak) and ATP turnover pathways which consume Delta[psi]m. Firstly, we used top-down elasticity analysis to establish which subsystems are targeted by Con A. Secondly, we quantitatively analysed the steady-state regulation of the system variables by Con A: how do the subsystem fluxes respond to Con A individually and as a whole? Our results indicate that: (1) steady-state respiration and Delta[psi]m increase as Con A concentration is raised, but at higher concentrations the increase in respiration is less and Delta[psi]m falls; (2) Con A independently changes the kinetics of the reactions that produce and consume Delta[psi]m: the Delta[psi]m-producing reactions are inhibited, and the reactions involved in ATP turnover are stimulated; and (3) the overall effects of Con A are mostly mediated by effects on ATP turnover.  相似文献   

5.
A new control of mitochondrial membrane potential delta(psi)m and formation of reactive oxygen species (ROS) is presented, based on allosteric ATP-inhibition of cytochrome c oxidase at high intramitochondrial ATP/ADP ratios. Since the rate of ATP synthesis by the ATP synthase is already maximal at low membrane potentials (100-120 mV), the ATP/ADP ratio will also be maximal at this delta(psi)m (at constant rate of ATP consumption). Therefore the control of respiration by the ATP/ADP-ratio keeps delta(psi)m low. In contrast, the known 'respiratory control' leads to an inhibition of respiration only at high delta(psi)m values (150-200 mV) which cause ROS formation. ATP-inhibition of cytochrome c oxidase is switched on and off by reversible phosphorylation (via cAMP and calcium, respectively). We propose that 'stress hormones' which increase intracellular [Ca2+] also increase delta(psi)m and ROS formation, which promote degenerative diseases and accelerate aging.  相似文献   

6.
This paper presents and assesses the hypothesis that the proton leak across the mitochondrial inner membrane is an important contributor to standard metabolic rate, and that increases in the amount of mitochondrial inner membrane may be important in causing changes in proton leak and in the standard metabolic rate. The standard metabolic rate of an animal is known to be a function of body mass, phylogeny and thyroid status, and is largely attributed to the metabolically active internal organs. The total area of mitochondrial inner membrane in these organs correlates well with standard metabolic rate over a wide range of body masses in both ectotherms and endotherms. In hepatocytes isolated from rats, proton leak across the mitochondrial inner membrane accounts for about 30% of the resting oxygen consumption, and the distribution of control over respiration suggests that changes in mitochondrial inner membrane surface area will be accompanied by significant changes in the proton leak. This change in the leak will result in significant changes in resting oxygen consumption, but changes in ATP demand may also have a role to play in determining resting respiration rate. Extrapolation of these results to other tissues and other animals suggests that the hypothesis has the potential to explain a substantial proportion of the variation in standard metabolic rate with body mass, phylogeny and thyroid status. However, in most cases the quantitative contribution of proton leak compared to cellular ATP turnover has yet to be experimentally determined.  相似文献   

7.
Bloodstream forms of Trypanosoma brucei were found to maintain a significant membrane potential across their mitochondrial inner membrane (delta psi m) in addition to a plasma membrane potential (delta psi p). Significantly, the delta psi m was selectively abolished by low concentrations of specific inhibitors of the F1F0-ATPase, such as oligomycin, whereas inhibition of mitochondrial respiration with salicylhydroxamic acid was without effect. Thus, the mitochondrial membrane potential is generated and maintained exclusively by the electrogenic translocation of H+, catalysed by the mitochondrial F1F0-ATPase at the expense of ATP rather than by the mitochondrial electron-transport chain present in T. brucei. Consequently, bloodstream forms of T. brucei cannot engage in oxidative phosphorylation. The mitochondrial membrane potential generated by the mitochondrial F1F0-ATPase in intact trypanosomes was calculated after solving the two-compartment problem for the uptake of the lipophilic cation, methyltriphenylphosphonium (MePh3P+) and was shown to have a value of approximately 150 mV. When the value for the delta psi m is combined with that for the mitochondrial pH gradient (Nolan and Voorheis, 1990), the mitochondrial proton-motive force was calculated to be greater than 190 mV. It seems likely that this mitochondrial proton-motive force serves a role in the directional transport of ions and metabolites across the promitochondrial inner membrane during the bloodstream stage of the life cycle, as well as promoting the import of nuclear-encoded protein into the promitochondrion during the transformation of bloodstream forms into the next stage of the life cycle of T. brucei.  相似文献   

8.
A new mechanism on regulation of mitochondrial energy metabolism is proposed on the basis of reversible control of respiration by the intramitochondrial ATP/ADP ratio and slip of proton pumping (decreased H+/e- stoichiometry) in cytochrome c oxidase (COX) at high proton motive force delta p. cAMP-dependent phosphorylation of COX switches on and Ca2+-dependent dephosphorylation switches off the allosteric ATP-inhibition of COX (nucleotides bind to subunit IV). Control of respiration via phosphorylated COX by the ATP/ADP ratio keeps delta p (mainly delta psi(m)) low. Hormone induced Ca2+-dependent dephosphorylation results in loss of ATP-inhibition, increase of respiration and delta p with consequent slip in proton pumping. Slip in COX increases the free energy of reaction, resulting in increased rates of respiration, thermogenesis and ATP-synthesis. Increased delta psi(m) stimulates production of reactive oxygen species (ROS), mutations of mitochondrial DNA and accelerates aging. Slip of proton pumping without dephosphorylation and increase of delta p is found permanently in the liver-type isozyme of COX (subunit VIaL) and at high intramitochondrial ATP/ADP ratios in the heart-type isozyme (subunit VIaH). High substrate pressure (sigmoidal v/s kinetics), palmitate and 3,5-diiodothyronine (binding to subunit Va) increase also delta p, ROS production and slip but without dephosphorylation of COX.  相似文献   

9.
Metabolically competent isolated cerebral cortical nerve terminals were used to determine the effects of triethyllead (TEL) and triethyltin (TET) on cytosolic free calcium ([Ca2+]c), on plasma and mitochondrial membrane potentials, and on oxidative metabolism. In the presence of physiological concentrations of extracellular ions, 20 microM TEL and 20 microM TET increase [Ca2+]c from 185 nM to 390 and 340 nM, respectively. A simultaneous depolarization of plasma membrane potential (delta psi p) by only 3-4 mV occurs, a drop which is insufficient to open the voltage-sensitive Ca2+ channels. In contrast, an instant and substantial depolarization of mitochondrial membrane potential (delta psi m) upon addition of TEL and TET is evident, as monitored with safranine O fluorescence. At the same concentration, TEL and TET stimulate basal respiration of synaptosomes by 45%, induce oxidation of endogenous NAD(P)H, and reduce the terminal ATP/ADP ratio by 45%. Thus, TEL and TET inhibit ATP production of intrasynaptosomal mitochondria by a mechanism consistent with uncoupling of oxidative phosphorylation. This bioenergetic effect by TEL and TET can be prevented by omitting external chloride, and a concomitant reduction of the increase in [Ca2+]c by about 60% is observed. Uncoupling of mitochondrial ATP synthesis from oxidation by TEL and TET, [corrected] a process that is dependent on external chloride, is the main mechanism by which they [corrected] increase [Ca2+]c.  相似文献   

10.
In the pancreatic beta-cell, insulin secretion is stimulated by glucose metabolism resulting in membrane potential-dependent elevation of cytosolic Ca2+ ([Ca2+]c). This cascade involves the mitochondrial membrane potential (delta psi[m]) hyperpolarization and elevation of mitochondrial Ca2+ ([Ca2+]m) which activates the Ca(2+)-sensitive NADH-generating dehydrogenases. Metabolism-secretion coupling requires unidentified signals, other than [Ca2+]c, possibly generated by the mitochondria through the rise in [Ca2+]m. To test this paradigm, we have established an alpha-toxin permeabilized cell preparation permitting the simultaneous monitoring of [Ca2+] with mitochondrially targeted aequorin and insulin secretion under conditions of saturating [ATP] (10 mM) and of clamped [Ca2+]c at substimulatory levels (500 nM). The tricarboxylic acid (TCA) cycle intermediate succinate hyperpolarized delta psi(m), raised [Ca2+]m up to 1.5 microM and stimulated insulin secretion 20-fold, without changing [Ca2+]c. Blockade of the uniporter-mediated Ca2+ influx into the mitochondria abolished the secretory response. Moreover, glycerophosphate, which raises [Ca2+]m by hyperpolarizing delta psi(m) without supplying carbons to the TCA cycle, failed to stimulate exocytosis. Activation of the TCA cycle with citrate evoked secretion only when combined with glycerophosphate. Thus, mitochondrially driven insulin secretion at permissive [Ca2+]c requires both a substrate for the TCA cycle and a rise in [Ca2+]m. Therefore, mitochondrial metabolism generates factors distinct from Ca2+ and ATP capable of inducing insulin exocytosis.  相似文献   

11.
The lipophilic triphenylmethylphosphonium cation (TPMP+) has been employed to measure delta psi m, the electrical potential across the inner membrane of the mitochondria of intact hepatocytes. The present studies have examined the validity of this technique in hepatocytes exposed to graded concentrations of inhibitors of mitochondrial energy transduction. Under these conditions, TPMP+ uptake allows a reliable measure of delta psi m in intracellular mitochondria, provided that the ratio [TPMP+]i/[TPMP+]e is greater than 50:1 and that at the end of the incubation more than 80% of the hepatocytes exclude Trypan blue. Hepatocytes, staining with Trypan blue, incubated in the presence of Ca2+, do not concentrate TPMP+. The relationships between delta psi m and two other indicators of cellular energy state, delta GPc and Eh, or between delta psi m and J0, were examined in hepatocytes from fasted rats by titration with graded concentrations of inhibitors of mitochondrial energy transduction. Linear relationships were generally observed between delta psi m and delta GPc, Eh or J0 over the delta psi m range of 120-160 mV, except in the presence of carboxyatractyloside or oligomycin, where delta psi m remained constant. Both the magnitude and the direction of the slope of the observed relationships depended upon the nature of the inhibitor. Hepatocytes from fasted rats synthesized glucose from lactate or fructose, and urea from ammonia, at rates which were generally linear functions of the magnitude of delta psi m, except in the presence of oligomycin or carboxyatractyloside. Linear relationships were also observed between delta psi m and the rate of formation of lactate in cells incubated with fructose and in hepatocytes from fed rats. The linear property of these force-flow relationships is taken as evidence for the operation of thermodynamic regulatory mechanisms within hepatocytes.  相似文献   

12.
Data from a number of laboratories suggest that the exchange of glutamate for aspartate across the mitochondrial inner membrane is stimulated by glucagon and by Ca2+-mobilizing hormones. The purpose of this study was to determine the site of action of these hormones. Two possibilities were considered and tested. The first hypothesis is that the mitochondrial membrane electrical potential gradient (delta psi m) in the cells is increased by the hormones; and that the putative increase in delta psi m stimulates aspartate efflux. The second possibility is that Ca2+ mediates decreases in cellular levels of alpha-ketoglutarate, secondary to stimulation of alpha-ketoglutarate dehydrogenase, and that the decrease in alpha-ketoglutarate stimulates aspartate production by mitochondria. The effect of glucagon on delta psi m was estimated in intact hepatocytes using the lipophilic cation tetraphenyl phosphonium. No increase in delta psi m was observed due to hormone treatment. On the other hand, alpha-ketoglutarate was found to be an effective competitive inhibitor of aspartate formation via glutamate transamination by isolated liver mitochondria (Ki = 0.55 mM).  相似文献   

13.
To test if mitochondrial uncoupling in white adipocytes is responsible for obesity resistance of the aP2-Ucp transgenic mice expressing ectopic uncoupling protein 1 (UCPI) in white fat, mitochondrial membrane potential (delta psi(m)) was estimated by flow cytometry in adipocytes isolated from gonadal fat. Ectopic UCP1 (approximately 0.8 mol UCP1/mol respiratory chain) decreased the delta psi(m) and rendered the potential sensitive to GDP and fatty acids. These ligands of UCP1 had no effect on delta psi(m) in white adipocytes from non-transgenic mice, suggesting that the function of endogenous UCP2 in adipocytes was not affected. The results support the hypothesis that mitochondrial uncoupling in white fat may prevent development of obesity.  相似文献   

14.
(1) A method is presented for continuous and simultaneous monitoring of the 'in situ' mitochondrial membrane potential (delta psi m) and respiration rate of Ehrlich ascites tumor cells. The method involves permeabilization of the plasma membrane, achieved by treatment with low digitonin concentration, and the use of a TPP+ selective electrode attached to an oxygraph vessel. Binding of the probe inside the cells was analyzed assuming a proportional relationship between the amount of bound TPP+ and the free concentration of the lipophilic cation. (2) Evidence is reported that the addition of glucose to digitonin-permeabilized Ehrlich ascites tumor cells causes a decrease of mitochondrial membrane potential that coincided with a transient enhancement of the respiration rate and remained unchanged during the subsequent Crabtree effect. We have characterized the effect of glucose on delta psi m by determining its dependent on the glycolytic pathway and its sensitivity towards oligomycin. The mutual relationships between glucose and ADP effects on the mitochondrial membrane potential were also studied. A plausible mechanism underlying the depolarization of mitochondrial membrane induced by glucose is presented.  相似文献   

15.
The relationship between the steady-state level of membrane potential (delta psi) and the rates of energy production and consumption has been studied in mitochondria and submitochondrial particles. The energy-linked reactions investigated were oxidative phosphorylation (with NADH, succinate, and beta-hydroxybutyrate as respiratory substrates) and nucleoside triphosphate-driven transhydrogenation from NADH to NADP and uphill electron transfer from succinate to NAD. Results have shown the following. 1) Attenuation of the rates of the energy-producing reactions results in a parallel change in the rates of the energy-consuming reactions with little or no change in the magnitude of steady-state delta psi. 2) At low rates of energy production and consumption, steady-state delta psi decreases. However, this is due largely to the energy leak of the system which lowers static-head delta psi when the rate of energy production is slow. 3) When the rate of energy production and static-head delta psi are held constant, and the rate of energy consumption is diminished by partial inhibition or the use of suboptimal conditions (e.g. subsaturating substrate concentrations), then even a small decrease in the rate of energy consumption results in an upward adjustment of the level of steady-state delta psi. The lower the rate of energy input, the greater the upward adjustment of steady-state delta psi upon suppression of the rate of energy consumption. 4) The above results have been discussed with regard to the role of bulk-phase delta mu H+ or delta psi in the mitochondrial energy transfer reactions.  相似文献   

16.
Mitochondrial membrane potential (delta psi(m)) was determined in intact isolated nerve terminals using the membrane potential-sensitive probe JC-1. Oxidative stress induced by H2O2 (0.1-1 mM) caused only a minor decrease in delta psi(m). When complex I of the respiratory chain was inhibited by rotenone (2 microM), delta psi(m) was unaltered, but on subsequent addition of H2O2, delta psi(m) started to decrease and collapsed during incubation with 0.5 mM H2O2 for 12 min. The ATP level and [ATP]/[ADP] ratio were greatly reduced in the simultaneous presence of rotenone and H2O2. H2O2 also induced a marked reduction in delta psi(m) when added after oligomycin (10 microM), an inhibitor of F0F1-ATPase. H2O2 (0.1 or 0.5 mM) inhibited alpha-ketoglutarate dehydrogenase and decreased the steady-state NAD(P)H level in nerve terminals. It is concluded that there are at least two factors that determine delta psi(m) in the presence of H2O2: (a) The NADH level reduced owing to inhibition of alpha-ketoglutarate dehydrogenase is insufficient to ensure an optimal rate of respiration, which is reflected in a fall of delta psi(m) when the F0F1-ATPase is not functional. (b) The greatly reduced ATP level in the presence of rotenone and H2O2 prevents maintenance of delta psi(m) by F0F1-ATPase. The results indicate that to maintain delta psi(m) in the nerve terminal during H2O2-induced oxidative stress, both complex I and F0F1-ATPase must be functional. Collapse of delta psi(m) could be a critical event in neuronal injury in ischemia or Parkinson's disease when H2O2 is generated in excess and complex I of the respiratory chain is simultaneously impaired.  相似文献   

17.
Energy deficit after traumatic brain injury (TBI) may alter ionic homeostasis, neurotransmission, biosynthesis, and cellular transport. Using an in vitro model for TBI, we tested the hypothesis that stretch-induced injury alters mitochondrial membrane potential (delta(psi)m) and ATP in astrocytes and neurons. Astrocytes, pure neuronal cultures, and mixed neuronal plus glial cultures grown on Silastic membranes were subjected to mild, moderate, and severe stretch. After injury, delta(psi)m was measured using rhodamine-123, and ATP was quantified with a luciferin-luciferase assay. In astrocytes, delta(psi)m dropped significantly, and ATP content declined 43-52% 15 min after mild or moderate stretch but recovered by 24 h. In pure neurons, delta(psi)m declined at 15 min only in the severely stretched group. At 48 h postinjury, delta(psi)m remained decreased in severely stretched neurons and dropped in moderately stretched neurons. Intracellular ATP content did not change in any group of injured pure neurons. We also found that astrocytes and neurons release ATP extracellularly following injury. In contrast to pure neurons, delta(psi)m in neurons of mixed neuronal plus glial cultures declined 15 min after mild, moderate, or severe stretch and recovered by 24-48 h. ATP content in mixed cultures declined 22-28% after mild to severe stretch with recovery by 24 h. Our findings demonstrate that injury causes mitochondrial dysfunction in astrocytes and suggest that astrocyte injury alters mitochondrial function in local neurons.  相似文献   

18.
N Pfanner  W Neupert 《The EMBO journal》1985,4(11):2819-2825
The transfer of cytoplasmically synthesized precursor proteins into or across the inner mitochondrial membrane is dependent on energization of the membrane. To investigate the role of this energy requirement, a buffer system was developed in which efficient import of ADP/ATP carrier into mitochondria from the receptor-bound state occurred. This import was rapid and was dependent on divalent cations, whereas the binding of precursor proteins to the mitochondrial surface was slow and was independent of added divalent cations. Using this buffer system, the import of ADP/ATP carrier could be driven by a valinomycin-induced potassium diffusion potential. The protonophore carbonylcyanide m-chlorophenyl-hydrazone was not able to abolish this import. Imposition of a delta pH did not stimulate the import. We conclude that the membrane potential delta psi itself and not the total protonmotive force delta p is the required energy source.  相似文献   

19.
The mitochondrial membrane potential in isolated hepatocytes was measured using the distribution of the lipophilic cation triphenylmethylphosphonium (TPMP+) with appropriate corrections for plasma membrane potential, cytoplasmic and mitochondrial binding of TPMP+, and other factors. The relationship between mitochondrial membrane potential and respiration rate in hepatocytes was examined as the respiratory chain was titrated with myxothiazol in the presence of oligomycin. This relationship was nonproportional and similar to results with isolated mitochondria respiring on succinate. This shows that there is an increased proton conductance of the mitochondrial inner membrane in situ at high values of membrane potential. From the respiration rate and mitochondrial membrane potential of hepatocytes in the absence of oligomycin, we estimate that the passive proton permeability of the mitochondrial inner membrane accounts for 20-40% of the basal respiration rate of hepatocytes. The relationship between log[TPMP+]tot/[TPMP+]e and respiration rate in thymocytes was also nonproportional suggesting that the phenomenon is not peculiar to hepatocytes. There is less mitochondrial proton leak in hepatocytes from hypothyroid rats. A large proportion of the difference in basal respiration rate between hepatocytes from normal and hypothyroid rats can be accounted for by differences in the proton permeability characteristics of the mitochondrial inner membrane.  相似文献   

20.
The transmembrane potential (delta psi) of rabbit brain mitochondria was measured with the fluorescent dye dis--C2--5. During oxidative phosphorylation a fall in delta psi in the order of 20% was observed. In the presence of inhibitors of ATP synthesis, there was a good correlation between the fall in delta psi and the ADP-stimulated increase in respiration rate. The influence of endogenous calcium on the energetic metabolism of mitochondria was studied by measuring the changes of delta psi. An amount of 12 nmol Ca2+/mg protein cause half-inhibition of the ATP synthesis rate; 50 nmol/mg completely inhibits oxidative phosphorylation. The effect of the Ca2+ load on the ATPase activity of intact mitochondria was studied. It was found that endogenous calcium inhibits in a similar degree synthesis and hydrolysis of ATP. It was shown that both Ca ATP and Mg ATP can serve as a substrate for the mitochondrial ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号