首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Biogeography needs a standard, coherent nomenclature. Currently, in biogeography, the same name is used for different areas of biological endemism, and one area of endemism is known by more than one name, which leads to conflict and confusion. The name 'Mediterranean', for example, may mean different things to different people – all or part of the sea, or the land in and around it. This results in ambiguity concerning the meaning of names and, more importantly, may lead to conflicts between inferences based on different aspects of a given name. We propose the International Code of Area Nomenclature (ICAN), a naming system that can be used to classify newly coined or existing names based on a standard. When fully implemented, the ICAN will improve communication among biogeographers, systematists, ecologists and conservation biologists.  相似文献   

3.
The fourth edition of the International Code of Phytosociological Nomenclature (ICPN) was prepared by the Steering Committee of the IAVS Working Group for Phytosociological Nomenclature (GPN). The edition consists of 14 Definitions, 7 Principles, 53 Articles, and 7 Appendices. When compared with the previous edition, the main amendments are: (a) the acceptance of electronic publications (Art. 1); (b) the introduction of binding decisions (Definition XIV, Principle II, Articles 1, 2b, 3c, 29b, 40, 42, 44, Appendices 6 and 7); (c) the mandatory use of the English or Latin terminology for syntaxonomic novelties (Definition II, Principle II, Articles 3d and 3i); (d) the introduction of autonyms for the main ranks when the corresponding secondary ranks are created (Articles 13b and 24); (e) the automatic correction of the taxon names (name-giving taxa) used in the names of syntaxa in accordance with the International Code of Nomenclature for algae, fungi, and plants (ICN) (Article 44); (f) the possibility to mutate the name of a syntaxon in using other correct, alternative names for the name-giving taxa (Article 45); (g) the introduction of inadequate names, a new category of rejected names (Definition V, Articles 43 through 45); and (h) the introduction of a conserved type (Definition XIII, Article 53). The fourth edition of ICPN was approved by the GPN on 25 May 2019 and becomes effectively binding on 1 January 2021.  相似文献   

4.
5.
Salathé and Ebert (2003, J. Evol. Biol. 16: 976–985) have shown that the mean logarithmic fitness of Daphnia magna clones declined faster than linearly with increasing inbreeding coefficient F. They interpreted this result as evidence for synergistic epistasis. Trouve et al. (2004, J. Evol. Biol., doi: 10.1111/j.1420‐9101.2004.00755.x) suggested that hybrid vigour could be an alternative explanation for this finding. We use a population genetic model to support the original claim that the marked deviation from linearity cannot be explained without epistasis. We further argue that the relevant reference population is the metapopulation and not the subpopulation. Taken together, we believe that synergistic epistasis between recessive deleterious alleles segregating in the D. magna metapopulation is the most likely explanation for the finding of Salathé and Ebert.  相似文献   

6.
Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) provide a discussion of the criteria expected for the best approach to validation of mapping programs and uses Hunter (Ecological Management & Restoration 17 , 2016, 40) to highlight issues involved. While we support the general principles outlined, we note that the review does not apply the same standards to Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011), the original document critiqued by Hunter (Ecological Management & Restoration 17 , 2016, 40). The Hunter (Ecological Management & Restoration 17 , 2016, 40) validation was based on a larger sample size, greater sampling within mapping units and greater representation of landscapes than Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011). Survey and validation sites being placed along public roads and lands are common to both the general Office of Environment and Heritage (OEH) and Hunter (Ecological Management & Restoration 17 , 2016, 40) validation methodologies. Thus, the criticisms of Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) of the Hunter (Ecological Management & Restoration 17 , 2016, 40) approach apply equally, if not more, to Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011). We outline in the article how the Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) critique was selective and in some cases incorrect in its analysis of issues presented in Hunter (Ecological Management & Restoration 17 , 2016, 40) and did not apply the same criteria to their own work. We conclude by discussing future directions for validating and mapping vegetation communities.  相似文献   

7.
8.
9.
10.
In systematics, the uncovering of monophyletic units, of sister group relationships and also of paraphyla is an important part of primary research. The hypotheses derived are thus subject to falsification and are subject to change. In contrast, classifications are a secondary step, as they are derived from such hypotheses. Classifications are based on different philosophies, which permit different solutions as to how results in the fields of taxonomy and phylogenetics can be transposed into a ‘system’. The function of classifications is at least partly utilitarian, and this is even more true for the names and principles of nomenclature. Nomenclature is simply a tool for information retrieval and for safeguarding understanding. Directly linking names and cladograms or nodes, respectively – making them subject to changes by falsification – would deliberately ignore the primary, strictly utilitarian function of long‐established principles of nomenclature and would endanger an instrument that functions almost perfectly. Approaches to introduce a so‐called PhyloCode should therefore not be pursued, as there is no chance at all that this kind of code could be generally accepted.  相似文献   

11.
1. The management of non-indigenous species is not without its complications. In Bergstrom et al. 's (2009) study, we demonstrated that feral cats Felis catus on sub-Antarctic Macquarie Island were exerting top-down control on the feral rabbit Oryctolagus cuniculus population, and that the eradication of the cats led to a substantial increase in rabbit numbers and an associated trophic cascade.
2. Dowding et al. (2009) claim our modelling was flawed for various reasons, but primarily that a reduction in the application of the rabbit control agent, Myxoma virus, coinciding with cat removal, was a major driver of rabbit population release.
3. We explore this proposition (as well as others) by examining rates of Myxoma viral release between 1991 and 2006 (with an attenuation factor for the years, 2003–2006) in association with presence/absence of cats against two estimates of rabbit population size. Myxoma viral release was a significant factor in the lower estimates of rabbit population, but the effect was small, and was not significant for higher rabbit population estimates. By contrast, the presence or absence of cats remained highly significant for both estimates.
4. Synthesis and applications. We re-affirm our position that top-down control of rabbit numbers by cats, prior to their eradication, was occurring on Macquarie Island. Nonetheless, we agree with Dowding et al. (2009) that systems with multiple invasive species represent complex situations that require careful scrutiny. Such scrutiny should occur in advance of, during, and following management interventions.  相似文献   

12.
13.
We note serious problems in Collins et al. (Journal of Biogeography, 2011, doi: 10.1111/j.1365‐2699.2011.02506.x ): failure to use over 80% of the available data; failure to use one of the two available archipelagoes; mistaken inclusion of four species; and reliance on a grossly inadequate number of null matrices. Curing the paper of these problems would have strengthened the evidence for checkerboards and the role of competition.  相似文献   

14.
15.
16.
17.
Confusion between evidence and hypothesis in biogeographical studies was the focus of our recent Guest Editorial (Parenti & Ebach, 2013, Journal of Biogeography, 40 , 813–820). That editorial was critiqued by de Bruyn et al. (2013, Journal of Biogeography, doi: 10.1111/jbi.12166) to whom we reply briefly here. Despite our shared goals – to understand what lives where and why – we argue from different philosophical premises. Although we may have little common ground, such debate encourages the good health of the field of biogeography.  相似文献   

18.
19.
20.
In a recent article, Hachich et al. (2015, Journal of Biogeography, 42 , 1871–1882) studied the large‐scale biogeographical patterns of the species–area, species–island age and species–isolation relationships associated with marine shallow‐water groups (reef fish, gastropods and seaweeds) from 11 Atlantic archipelagos. We here express our concerns regarding the data accuracy used to compute the different models that tested the null hypothesis of species richness being independent of the selected variables. In our commentary, we focus mainly on the use of out‐of‐date checklists of gastropod and seaweed species from different archipelagos, but we also point out inaccuracies in some island age estimates and explain our disagreement with the use of the 200 m depth limit for the shallow‐water gastropods and seaweeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号