首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ploidal level information is of particular importance in intricate polyploid complexes such as in arctic-alpine Draba . Relative DNA content is reported for the tetra- and hexaploid D. lactea and seven of its low-ploid relatives. Flow cytometry was used to study 200 plants from 93 populations, the screening based on relative fluorescence. Absolute DNA content was determined by Feulgen densitometry for 13 plants from seven species, and reference chromosome numbers were determined in 12 plants (1–3 per species) representing six species. The plants grouped into diploids (2 n  = 16), tetraploids (2 n  = 32), hexaploids (2 n  = 48), and two triploids. Each ploidal level showed a linear increase in relative DNA content, pointing to a relatively recent polyploid origin. The diploid level was confirmed in D. nivalis, D. subcapitata, D. fladnizensis , and D. lonchocarpa. Draba palanderiana , reported previously as di-, tetra- and octoploid, was diploid in all investigated accessions. Hexa- and tetraploids were observed in D. lactea , in approximately the same ratio (8 : 1) as reported previously. The ploidal levels of the Central Asian D. altaica and D. turczaninovii are reported here for the first time as diploid and tetraploid, respectively.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 333–347.  相似文献   

2.
Polyploidization is one of the few mechanisms that can produce instantaneous speciation. Multiple origins of tetraploid lineages from the same two diploid progenitors are common, but here we report the first known instance of a single tetraploid species that originated repeatedly from at least three diploid ancestors. Parallel evolution of advertisement calls in tetraploid lineages of gray tree frogs has allowed these lineages to interbreed, resulting in a single sexually interacting polyploid species despite the separate origins of polyploids from different diploids. Speciation by polyploidization in these frogs has been the source of considerable debate, but the various published hypotheses have assumed that polyploids arose through either autopolyploidy or allopolyploidy of extant diploid species. We utilized molecular markers and advertisement calls to infer the origins of tetraploid gray tree frogs. Previous hypotheses did not sufficiently account for the observed data. Instead, we found that tetraploids originated multiple times from extant diploid gray tree frogs and two other, apparently extinct, lineages of tree frogs. Tetraploid lineages then merged through interbreeding to result in a single species. Thus, polyploid species may have complex origins, especially in systems in which isolating mechanisms (such as advertisement calls) are affected directly through hybridization and polyploidy.  相似文献   

3.
104 populations of 15 Nordic species (2x–16x) of the taxonomically complex genusDraba were investigated using enzyme electrophoresis. The polyploids were genetic alloploids showing high levels of fixed heterozygosity and electrophoretic variation; the diploids were homozygous and genetically depauperate. Thus, the data suggest that alloploidy in arctic-alpineDraba serves as an escape from genetic depauperation caused by inbreeding at the diploid level. Although some populations probably have local alloploid origins, electrophoretic data indicate that several polyploids have migrated repeatedly into the Nordic area.Draba crassifolia (2n = 40) is probably octoploid based on x = 5. A hypothesis on the evolutionary history of the polyploids based on x = 8 is presented. Diploids contributing to numerous polyploid genomes and multiple origins of polyploids have seriously blurred taxonomic relationships. Relationships inferred from genetic data do not always correspond to those based on morphology; two morphologically very similar polyploids,D. alpina andD. oxycarpa, were, for example, genetically distant and probably represent independent lineages.  相似文献   

4.
The octoploid Draba cacuminum (Brassicaceae) is one of the few endemic species in Scandinavia and has frequently been considered an example supporting the glacial survival theory. Two subspecies, ssp. cacuminum in southern Norway and ssp. angusticarpa in northern Scandinavia, have been described and suggested to be geographically diverged remnants of a more continuously distributed ancestor. To test an alternative hypothesis of independent origins of similar octoploids in different areas, we investigated populations of D. cacuminum and its possible progenitors using enzyme electrophoresis and morphological analysis. Electrophoretic analysis of progeny of D. cacuminum revealed high levels of fixed heterozygosity, suggesting that the species is a genetic alloploid. Fixed electrophoretic differences among the populations and additivity of electrophoretic phenotypes indicate that the octoploid D. cacuminum has originated at least three times by alloploidizations involving different populations of the hexaploid D. norvegica and a diploid species, possibly D. fladnizensis. Electrophoretic and morphometric data suggest that populations of D. cacuminum with broad siliculae have originated from populations of D. norvegica that had broad siliculae, and that populations of D. cacuminum with narrow siliculae have originated from populations of D. norvegica that had narrow siliculae. However, the electrophoretic and morphometric variation within D. cacuminum did not correspond to the geographic origin of the populations, and the previously described subspecies could not be recognized. Draba cacuminum gives no relevant information on the glacial survival theory; the polyploidizations may have occurred in postglacial time as well as in pre-Weichselian periods.  相似文献   

5.
Polyploid and hybrid evolution in roses east of the Rocky Mountains   总被引:2,自引:0,他引:2  
This study investigates the impact of hybridization and polyploidy in the evolution of eastern North American roses. We explore these processes in the Rosa carolina complex (section Cinnamomeae), which consists of five diploid and three tetraploid species. To clarify the status and origins of polyploids, a haplotype network (statistical parsimony) of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) nuclear gene was estimated for polyploids of the complex and for diploids of section Cinnamomeae in North America. A genealogical approach helped to decipher the evolutionary history of polyploids from noise created by hybridization, incomplete lineage sorting, and allelic segregation. At the diploid level, species west of the Rocky Mountains are distinct from eastern species. In the east, two groups of diploids were found: one consists of R. blanda and R. woodsii and the other of R. foliolosa, R. nitida, and R. palustris. Only eastern diploids are involved in the origins of the polyploids. Rosa arkansana is derived from the blanda-woodsii group, R. virginiana originated from the foliolosa-nitida-palustris group, and R. carolina is derived from a hybrid between the two diploid groups. The distinct origins of these polyploid taxa support the hypothesis that the three polyploids are separate species.  相似文献   

6.
Deciphering species relationships and hybrid origins in polyploid agamic species complexes is notoriously difficult. In this study of cheilanthoid ferns, we demonstrate increased resolving power for clarifying the origins of polyploid lineages by integrating evidence from a diverse selection of biosystematic methods. The prevalence of polyploidy, hybridization, and apomixis in ferns suggests that these processes play a significant role in their evolution and diversification. Using a combination of systematic approaches, we investigated the origins of apomictic polyploids belonging to the Cheilanthes yavapensis complex. Spore studies allowed us to assess ploidy levels; plastid and nuclear DNA sequencing revealed evolutionary relationships and confirmed the putative progenitors (both maternal and paternal) of taxa of hybrid origin; enzyme electrophoretic evidence provided information on genome dosage in allopolyploids. We find here that the widespread apomictic triploid, Cheilanthes lindheimeri, is an autopolyploid derived from a rare, previously undetected sexual diploid. The apomictic triploid Cheilanthes wootonii is shown to be an interspecific hybrid between C. fendleri and C. lindheimeri, whereas the apomictic tetraploid C. yavapensis is comprised of two cryptic and geographically distinct lineages. We show that earlier morphology-based hypotheses of species relationships, while not altogether incorrect, only partially explain the complicated evolutionary history of these ferns.  相似文献   

7.
Nuclear DNA sequences from introns of the low-copy nuclear gene family encoding the second largest subunit of RNA polymerases and the ribosomal internal transcribed spacer (ITS) regions, combined with the psbE-petL spacer and the rps16 intron from the chloroplast genome were used to infer origins and phylogenetic relationships of North American polyploid Silene species and their closest relatives. Although the vast majority of North American Silene species are polyploid, which contrasts to the diploid condition dominating in other parts of the world, the phylogenetic analyses rejected a single origin of the North American polyploids. One lineage consists of tetraploid Silene menziesii and its diploid allies. A second lineage, Physolychnis s.l., consists of Arctic, European, Asian, and South American taxa in addition to the majority of the North American polyploids. The hexaploid S. hookeri is derived from an allopolyploidization between these two lineages. The tetraploid S. nivea does not belong to any of these lineages, but is closely related to the European diploid S. baccifera. The poor resolution within Physolychnis s.l. may be attributed to rapid radiation, recombination among homoeologues, homoplasy, or any combination of these factors. No extant diploid donors could be identified in Physolychnis s.l.  相似文献   

8.
Zhou D  Zhou J  Meng L  Wang Q  Xie H  Guan Y  Ma Z  Zhong Y  Chen F  Liu J 《Gene》2009,441(1-2):36-44
Plants have evolved diverse adaptive mechanisms that enable them to tolerate abiotic stresses, to varying degrees, and such stresses may have strongly influenced evolutionary changes at levels ranging from molecular to morphological. Previous studies on these phenomena have focused on the adaptive evolution of stress-related orthologous genes in specific lineages. However, heterogenetic evolution of the paralogous genes following duplication has only been examined in a very limited number of stress-response gene families. The COR15 gene encodes a low molecular weight protein that plays an important role in protecting plants from cold stresses. Although two different copies of this gene have been found in the model species, Arabidopsis thaliana, evolutionary patterns of this small gene family in plants have not been previously explored. In this study, we cloned COR15-like sequences and performed evolutionary analyses of these sequences (including those previously reported) in the highly cold-tolerant Draba lineage and related lineages of Brassicaceae. Our phylogenetic analyses indicate that all COR15-like sequences clustered into four clades that corresponded well to the morphological lineages. Gene conversions were found to have probably occurred before/during the divergence of Brassica and Draba lineage. However, repeated, independent duplications of this gene have occurred in different lineages of Brassicaceae. Further comparisons of all sequences suggest that there have been significant inter-lineage differences in evolutionary rates between the duplicated and original genes. We assessed the likelihood that the differences between two well-supported gene subfamilies that appear to have originated from a single duplication, COR15a and COR15b, within the Draba lineage have been driven by adaptive evolution. Comparisons of their non-synonymous/synonymous substitution ratios and rates of predicted amino acid changes indicate that these two gene groups are evolving under different selective pressures and may be functionally divergent. This functional divergence was confirmed by comparing site-specific shifts in evolution indexes of the two groups of predicted proteins. The evidence of differential selection and possible functional divergence suggests that the duplication may be of adaptive significance, with possible implications for the explosive diversification of the Draba lineage during the cooling Quaternary stages and the following worldwide colonization of arid alpine and artic regions.  相似文献   

9.
Speciation by polyploidy is rare in animals, yet, in vertebrates, there is a disproportionate concentration of polyploid species in anuran amphibians. Sequences from the cytochrome b gene of the mitochondrial DNA (mtDNA) were used to determine phylogenetic relationships among 37 populations of the diploid-tetraploid species pair of gray treefrogs, Hyla chrysoscelis and Hyla versicolor. The diploid species, H. chrysoscelis, consists of an eastern and a western lineage that have 2.3% sequence divergence between them. The tetraploid species, H. versicolor, had at least three separate, independent origins. Two of the tetraploid lineages are more closely related to one or the other of the diploid lineages (0.18%–1.4% sequence divergence) than they are to each other (1.9%–3.4% sequence divergence). The maternal ancestor of the third tetraploid lineage is unknown. The phylogenetic relationships between the two species and among lineages within each species support the hypothesis of multiple origins of the tetraploid lineages.  相似文献   

10.
Pollen and seed morphology were examined in 54 diploid and allopolyploid populations representing 15 Nordic species of the taxonomically complex genus Draba. The pollen size was strongly correlated with chromosome number, but it was unreliable for inferring the exact ploidal level of individual populations. Five main pollen types were recognized based on sculpturing of the exine. Two populations of D. lactea had conspicuously different exine sculpturing, supporting a previous hypothesis based on molecular data that this hexaploid is polyphyletic and has been derived from various combinations of diploid species. The pollen morphological data are also consistent with the hypotheses that the 16-ploid D. corymbosa is an intersectional allopolyploid derived from the sections Draba and Chrysodraba , that the hexaploid D. cinerea is a progenitor of the decaploid D. arctica , and that D. crassifolia and D. adamsii represent isolated allopolyploid lineages. The seed size and weight were only weakly correlated with chromosome number, but showed a close relationship to habitat ecology. The largest seeds were observed in species typical of closed habitats, in which seedling establishment probably is limited by competition with mosses. The seed coat surface had a characteristic verrucate reticulum, but the differentiation among species was vague or absent. The seed size and colour, however, distinguish some species, e.g., in the D. alpina complex, which otherwise are morphologically very similar.  相似文献   

11.
The reconstruction of an ancient polyploidization history is often challenging, although it is a crucial step in clarifying the mechanisms underlying the contemporary success and diversity of polyploids. Phylogenetic relationships of duplicated gene pairs of polyploids, with respect to their orthologs in related diploids, have been used to address this problem, but they often result in conflicting topologies among different genes. Asimitellaria is an East Asian endemic tetraploid lineage of perennials (genus Mitella; Saxifragaceae) that has diversified in riparian habitats. Phylogenetic analyses of four nuclear-encoded, single-copy (per haploid) genes GBSSI-A, GBSSI-B, GS-II, and PepCK all supported a single allopolyploid origin of Asimitellaria, but they did not lead to a consensus about which diploid lineage gave rise to each of the Asimitellaria subgenomes. To address this issue, we used an integrated approach, whereby the four gene data sets and an additional nuclear ribosomal external transcribed spacer and internal transcribed spacer (including a 5.8S ribosomal DNA) data set were concatenated in all possible combinations, and the most probable data combination was determined together with the phylogenetic inference. This resulted in relatively robust support for the two closely related North American diploid species as the ancestral lineages of the Asimitellaria subgenomes, suggesting ancient intercontinental migration of the diploid or tetraploid lineages and subsequent tetraploid diversification in the Japanese Archipelago. The present approach enabled sorting out the duplicated genes into their original combinations in their preduplication ancestors under a maximum-likelihood framework, and its extension toward genome sequencing data may help in the reconstruction of ancestral, preduplicated, whole-genome structures.  相似文献   

12.
The proportion of polyploid plant species increases at higher latitudes, and it has been suggested that original postglacial Arctic immigrants of some large groups, including grasses, were polyploid. We analyzed noncoding nuclear and chloroplast DNA of all North American diploid Puccinellia (Poaceae) and a subset of arctic polyploids to hypothesize evolutionary relationships among diploids and to evaluate the parentage of polyploids. Diploids formed three lineages: one uniting arctic species P. arctica and P. banksiensis; a second comprising arctic species P. tenella, P. alaskana, P. vahliana, and P. wrightii; and a third uniting the two temperate species P. lemmonii and P. parishii. The arctic species P. angustata (hexaploid) and P. andersonii (primarily octoploid) apparently derive from the P. arctica-P. banksiensis lineage based on ITS and chloroplast sequences, and share an ancestor with arctic triploid/tetraploid P. phryganodes based on nrDNA sequences. Sequence comparisons also suggest tetraploid P. bruggemannii evolved from two arctic lineages: P. vahliana-P. wrightii and P. arctica-P. banksiensis. These patterns and the predominance of arctic rather than temperate diploid species support the idea that diploid Puccinellia recolonized the Arctic from northern glacial refugia like Beringia, and also formed stabilized polyploid hybrids during these refugial events or subsequently during postglacial colonization.  相似文献   

13.
In Europe, the genus Dactylorhiza comprises a bewildering variety of forms that are difficult to sort into discrete species. Most Dactylorhiza species are diploid or tetraploid and contrasting hypotheses have been proposed to explain the complex variation within this group. Using PCR-RFLP analysis in eight putative species, we could identify four highly differentiated chloroplast DNA lineages. The first lineage (clade A) included the unique haplotype found in D. sambucina. Clade B grouped four haplotypes belonging mostly to D. incarnata. Clades C and D included 27 haplotypes detected in diploid D. fuchsii and in all tetraploid species investigated. Eighty percent of the chloroplast variation were consistent with currently accepted species boundaries. The imperfect agreement between chloroplast variation and species boundaries may be ascribed to incomplete lineage sorting and/or reticulation. Our cpDNA results provide strong evidence that the allotetrapolyploids have been formed through asymmetric hybridization with a member of the D. fuchsii / maculata group as the maternal parent.  相似文献   

14.
China has numerous native domestic goat breeds, but so far there has been no extensive study on genetic diversity, population demographic history, and origin of Chinese goats. Here, we examined the genetic diversity and phylogeographic structure of Chinese domestic goats by determining a 481-bp fragment of the first hypervariable region of mitochondrial DNA (mtDNA) control region from 368 individuals representing 18 indigenous breeds. Phylogenetic analyses revealed that there were four mtDNA lineages (A-D) identified in Chinese goats, in which lineage A was predominant, lineage B was moderate, and lineages C and D were at low frequency. These results further support the multiple maternal origins of domestic goats. The pattern of genetic variation in goat mtDNA sequences indicated that the two larger lineages A and B had undergone population expansion events. In a combined analysis of previously reported sequences and our sequences belonging to lineage B, we detected two subclades, in which one was unique to eastern Asia and another was shared between eastern and southern Asia. A larger genetic variation in eastern Asia than southern Asia and the pattern of phylogeographic variation in lineage B suggest that at least one subclade of lineage B originated from eastern Asia. There was no significant geographical structuring in Chinese goat populations, which suggested that there existed strong gene flow among goat populations caused by extensive transportation of goats in history.  相似文献   

15.
For polyploid species to persist, they must be reproductively isolated from their diploid parental species, which coexist at the same time and place at least initially. In a complex of biparentally reproducing tetraploid and diploid tree frogs in North America, selective phonotaxis--mediated by differences in the pulse-repetition (pulse rate) of their mate-attracting vocalizations--ensures assortative mating. We show that artificially produced autotriploid females of the diploid species (Hyla chrysoscelis) show a shift in pulse-rate preference in the direction of the pulse rate produced by males of the tetraploid species (Hyla versicolor). The estimated preference function is centred near the mean pulse rate of the calls of artificially produced male autotriploids. Such a parallel shift, which is caused by polyploidy per se and whose magnitude is expected to be greater in autotetraploids, may have facilitated sympatric speciation by promoting reproductive isolation of the initially formed polyploids from their diploid parental forms. This process also helps to explain why tetraploid lineages with different origins have similar advertisement calls and freely interbreed.  相似文献   

16.
Sequences of both internal and external transcribed spacers of nuclear ribosomal DNA were sequenced for four species belonging to the Dactylorhiza maculata group or "spotted marsh-Orchids". These four species are D. fuchsii, D. saccifera, D. foliosa, and D. maculata. Extensive nuclear ribosomal DNA polymorphism was uncovered within the diploid D. fuchsii and the putative autotetraploid D. maculata. Within the phylogenetic trees reconstructed using parsimony and Bayesian analyses, four main lineages (A, B, C, and D) were well supported. While D. saccifera, D. maculata, and D. foliosa were confined to clades B, C, and D, respectively, D. fuchsii accessions were spread over three clades (A, B, and C). Lineage C, which included accessions of the diploid D. fuchsii and the tetraploid D. maculata, was closely related to the lineage of D. foliosa (lineage D), an endemic diploid species from Madeira. Moreover, intra-individual polymorphism was found within accessions of D. maculata, D. fuchsii, and D. saccifera. It is shown that in some instances two lineages, contributed to the observed intra-individual polymorphism (C and A in D. maculata, A and B in D. fuchsii and D. saccifera). Evolutionary scenarios leading to this extensive nuclear ribosomal DNA polymorphism are discussed in the light of results from maternally inherited chloroplast DNA markers and an autopolyploid origin of D. maculata from a D. foliosa-like ancestor is postulated.  相似文献   

17.
Sequence data from a portion of the external transcribed spacer (ETS) and from the internal transcribed spacers (ITS1 and ITS2) of 18S-26S nuclear ribosomal DNA were used together with chloroplast DNA PCR-RFLP data to unravel patterns of allotetraploid speciation within the Western European Dactylorhiza polyploid complex. A maximum likelihood tree based on combined ETS and ITS sequences suggests that the Western European Dactylorhiza allotetraploids have evolved by hybridization between four main diploid lineages. Cloned sequences and the topology of the ITS plus ETS tree indicate that the allotetraploid species D. elata, D. brennensis, and D. sphagnicola have originated from the autotetraploid D. maculata together with the diploid D. incarnata, while D. majalis, D. traunsteineri, and D. angustata seem to have evolved by hybridization between the D. fuchsii s.str and D. incarnata lineages. Finally, the diploid D. saccifera lineage seems to have been involved together with the D. incarnata lineage in the formation of the allotetraploid D. praetermissa. The observed congruence between the chloroplast tree and the ITS/ETS tree suggests a directional evolution of the nrDNA after polyploidization in favor of the maternal genome. Considered together with morphological, biogeographical, and ecological evidence, the molecular analysis leads us to recognize four species within the investigated allotetraploid complex, namely D. majalis, D. praetermissa, D. elata, and D. sphagnicola.  相似文献   

18.
? Premise of the study: Polyploid speciation has been important in plant evolution. However, the conditions that favor the origination and persistence of polyploids are still not well understood. Here, we examine origins of 16 polyploid species in Mentzelia section Trachyphytum. ? Methods: We used phylogeny reconstructions based on DNA sequences from plastid regions and the nuclear gene isocitrate dehydrogenase (idh) to construct hypotheses of introgression and polyploidization. ? Key results: Molecular data suggest that homoploid hybridization has been surprisingly common in Trachyphytum. Diploid species had unequal involvement in polyploid origins, but most polyploid taxa had allopolyploid origins from extant progenitors. A few polyploids with extreme phenotypes did not appear to have extant progenitors. We infer that the progenitors of these species were derived from extinct diploid lineages or ancestral lineages of multiple extant diploids. In agreement with other recent studies, we recovered molecular evidence of multiple phylogenetically distinct origins for several polyploid taxa, including the widespread octoploid M. albicaulis. ? Conclusions: Evidence of high levels of introgression and allopolyploidy suggests that hybridization has played an important role in the evolution of Trachyphytum. Although idh sequences exhibited complicated evolution, including gene duplication, deletion, and recombination, they provided a higher percentage of informative characters for phylogeny reconstruction than the most variable plastid regions, allowing tests of hypotheses regarding polyploid origins. Given the necessity for rapidly evolving low-copy nuclear genes, researchers studying hybridization and polyploidy may increasingly turn to complex sequence data.  相似文献   

19.
The Chrysanthemum indicum polyploid complex comprises morphologically differentiated diploids, tetraploids and hybrids between C. indicum and C. lavandulifolium. The relationships between species and cytotypes within this complex remain poorly understood. Random amplified polymorphic DNAs (RAPDs), intersimple sequence repeats (ISSRs) and chloroplast SSR markers were used to elucidate the genetic diversity and relationships of the C. indicum polyploid complex. Molecular analysis of three diploid and nine tetraploid populations provided strong evidence for recurrent origins and lineage recombination in the C. indicum polyploid complex. The high similarity in molecular marker profiles and cpDNA haplotypes between the diploids and tetraploids distributed in the Shen-Nong-Jia Mountain area of China suggested an autopolyploid origin of the tetraploids, while the tetraploids from other populations may have originated via allopolyploidization. Lineage recombination was revealed by the extensive sharing of chloroplast haplotypes and genetic markers among the tetraploid populations with different origins. Multiple differentiation and hybridization/polyploidization cycles have led to an evolutionary reticulation in the C. indicum polyploid complex, and resulted in the difficulties in systematic classification.  相似文献   

20.
The domestic goat is one of the most important livestock species, but its origins and genetic diversity still remain uncertain. Multiple highly divergent maternal lineages of goat have been reported in previous studies. Although one of the mitochondrial DNA lineages, lineage B, was detected only in eastern and southern Asia, the geographic distribution of these lineages was previously unclear. Here, we examine the genetic diversity and phylogeographic structure of Asian goats by mitochondrial DNA sequences and morphological characteristics. The analyses of a total of 1661 Asian goats from 12 countries revealed a high frequency of lineage B in Southeast Asia. The frequency of this lineage tended to be higher in mountain areas than in plain areas in Southeast Asian countries, and there was a significant correlation between its frequency and morphological traits. The results suggest an original predominance of lineage B in Southeast Asia and the recent infiltration of lineage A into Southeast Asian goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号