首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Larkin RM  Hagen G  Guilfoyle TJ 《Gene》1999,231(1-2):41-47
Arabidopsis thaliana contains at least four genes that are predicted to encode polypeptides related to the RPB5 subunit found in yeast and human RNA polymerase II. This subunit has been shown to be the largest subunit common to yeast RNA polymerases I, II, and III (RPABC27). More than one of these genes is expressed in Arabidopsis suspension culture cells, but only one of the encoded polypeptides is found in purified RNA polymerases II and III. This polypeptide has a predicted pI of 9.6, matches 14 of 16 amino acids in the amino terminus of cauliflower RPB5 that was microsequenced, and shows 42 and 53% amino acid sequence identity with the yeast and human RPB5 subunits, respectively.  相似文献   

6.
7.
8.
A new double-stranded RNA-binding protein that interacts with PKR   总被引:2,自引:0,他引:2       下载免费PDF全文
We have identified a 74 kDa double-stranded (ds)RNA-binding protein that shares extensive homology with the mouse spermatid perinuclear RNA-binding (Spnr) protein. p74 contains two dsRNA-binding motifs (dsRBMs) that are essential for preferential binding to dsRNA. Previously, dsRNA-binding proteins were shown to undergo homo- and heterodimerization, raising the possibility that regulation of activity could be controlled by interactions between different family members. Homodimerization is required to activate the dsRNA-dependent protein kinase PKR, whereas heterodimerization between PKR and other dsRNA-binding proteins can inhibit kinase activity. We have found that p74 also interacts with PKR, both the wild-type enzyme and a catalytically defective mutant (K296R). While co-expression of p74 and wild-type PKR in the yeast Saccharomyces cerevisiae did not alter PKR activity, co-expression of p74 and the catalytically defective K296R mutant surprisingly resulted in abnormal morphology and cell death in transformants that maintained a high level of p74 expression. These transformants could be rescued by overexpression of the α-subunit of wild-type eukaryotic translation initiation factor 2 (eIF2α), one of the known substrates for PKR. We hypothesize that competing heterodimers between p74–K296R PKR and eIF2αK296R PKR may control cell growth such that stabilization of the p74–K296R PKR heterodimer induces abnormal morphology and cell death.  相似文献   

9.
10.
RPB1 and RPB2, which encode the largest and second largest subunits of RNA polymerase II, respectively, are essential single copy genes in fungi, animals and most plants. Two paralogs of the RPB2 gene have been found in some groups of angioperms [Oxelman, B., Yoshikawa, N., McConaughy, B.L., Luo, J., Denton, A.L., Hall, B.D., 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Mol. Phylogenet. Evol. 32, 462-479]. Here, we report the results of experiments designed to identify the evolutionary origin of the RPB2 duplicate copies. Through careful sampling and phylogenetic analysis, we were able to construct the RPB2 gene tree in angiosperms and infer the phylogenetic positions of the gene duplication and gene loss events that occurred. Our study shows that an RPB2 gene duplication occurred early in core eudicot evolution, at or near the time of the Buxaceae/Trochodendraceae divergence. Subsequently, multiple gene duplication and paralog sorting events happened independently in different core eudicot taxa. Differential expression of the two RPB2 gene paralogs may explain the preservation of both paralogs in the asterids. One gene (RPB2-i) accounts for most of the RPB2 mRNA made in the flower organs while the other gene (RPB2-d) is predominantly used in the vegetative tissues. We also found two paralogs of the RPB1 gene in some core eudicot species. The RPB1 gene duplication occurred before core eudicot divergence, around the time of RPB2 gene duplication. Several independent RPB1 paralog sorting events happened in different core eudicot taxa; their occurrence was independent of the RPB2 paralog sorting events. Our results suggest that a polyploidization event happened at or near the time of the Buxaceae/Trochodendraceae divergence. We propose that this polyploidization and the partial diploidization processes thereafter may have been the driving force of core eudicot radiation.  相似文献   

11.
《Gene》1997,187(2):165-170
By means of the yeast two-hybrid system using the 40-kDa subunit of mouse RNA polymerase I, mRPA40, as the bait, we isolated a mouse cDNA which encoded a protein with significant homology in amino acid sequence to the 12.5-kDa subunit of Saccharomyces cerevisiae RNA polymerase II, B12.5 (RPB11). Specific antibody raised against the recombinant protein that was derived from the cDNA reacted with a 14-kDa polypeptide in highly purified mammalian RNA polymerase II and did not react with any subunit of RNA polymerase I or III. Moreover, the antibody co-immunoprecipitated the largest subunit of mouse RNA polymerase II. These results provide biochemical evidence that the cDNA isolated, named mRPB14, encodes a specific subunit of RNA polymerase II, and indicate that the subunit organization of the enzyme is conserved between yeast and mouse. A possible role of the α-motif [Dequard-Chablat, M., Riva, M., Carles, C. and Sentenac, A., J. Biol. Chem. 266 (1991) 15300–15307] in the protein-protein interaction between mRPA40 and mRPB14 is also discussed.  相似文献   

12.
13.
Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using O2, α-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-1α/β under hypoxia and that treatment with Clioquinol, a HIF-1α activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-1α and its dimerization partner HIF-1β/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-1α/β heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.  相似文献   

14.

Background and Aims

It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum.

Methods

RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species.

Key Results

MITE was detected in the Xu genome. A 27–36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species.

Conclusions

MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.Key words: Molecular evolution, RPB2, Hordeum, transposable element, phylogeny  相似文献   

15.
16.
17.
The Saccharomyces cerevisiae RNA polymerase II subunit gene RPB9 was isolated and sequenced. RPB9 is a single copy gene on chromosome VII. The RPB9 sequence predicts a protein of 122 amino acids with a molecular mass of 14,200 Da. The yeast RPB9 subunit is similar in size and sequence to a protein encoded by DNA adjacent to the suppressor of the Hairy Wing gene in Drosophila melanogaster. Deletion of the RPB9 gene produced cells that were heat- and cold-sensitive. The RPB9 subunit, like the previously described RNA polymerase II subunit RPB4, is not essential for synthesis of mRNA, but is required for normal cell growth over a wide temperature range.  相似文献   

18.
19.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   

20.
tRNA 3′ processing endoribonuclease (3′ tRNase) is an enzyme responsible for the removal of a 3′ trailer from precursor tRNA (pre-tRNA). We purified ~85 kDa 3′ tRNase from pig liver and determined its partial sequences. BLAST search of them suggested that the enzyme was the product of a candidate human prostate cancer susceptibility gene, ELAC2, the biological function of which was totally unknown. We cloned a human ELAC2 cDNA and expressed the ELAC2 protein in Escherichia coli. The recombinant ELAC2 was able to cleave human pre-tRNAArg efficiently. The 3′ tRNase activity of the yeast ortholog YKR079C was also observed. The C-terminal half of human ELAC2 was able to remove a 3′ trailer from pre-tRNAArg, while the N‐terminal half failed to do so. In the human genome exists a gene, ELAC1, which seems to correspond to the C-terminal half of 3′ tRNase from ELAC2. We showed that human ELAC1 also has 3′-tRNase activity. Furthermore, we examined eight ELAC2 variants that seem to be associated with the occurrence of prostate cancer for 3′-tRNase activity. Seven ELAC2 variants which contain one to three amino acid substitutions showed efficient 3′-tRNase activities, while one truncated variant, which lacked a C-terminal half region, had no activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号