首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated in six men the impact of 17 days of head-down bed rest (HDBR) on the daily rhythms of the hormones involved in hydroelectrolytic regulation. This HDBR study was designed to mimic a real space flight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of Growth Hormone (GH), Cortisol, 6 Sulfatoxymelatonin, Normetadrenaline (NMN) and Metadrenaline (NM) was determined. A decrease in urinary cortisol excretion during the night of HDBR was noted. For GH, a rhythm was found before and during HDBR. The rhythm of melatonin, evaluated with the urine excretion of 6 Sulfatoxymelatonin (aMT6S), the main hepatic metabolite, persisted throughout the experiment without any modification to the level of phase. A decrease during the night was noted for normetadrenaline urinary derivates, but only during the HDBR.  相似文献   

2.
Twenty-four (24) healthy women from 25-40 years of age underwent orthostatic tolerance tests consisting of passive tilt and lower body negative pressure before and after completing 60-days of continuous -6 degree head down tilt bed rest (HDBR). Prior to HDBR, participants were assigned to one of three groups: control, exercise or nutrition. We aimed to identify any acute head up tilt changes in mean arterial pressure, pulse pressure, total peripheral resistance, cardiac output, stroke volume, or heart rate, which might predict tolerance or changes in tolerance with HDBR. Generally, these attempts were largely unsuccessful. The results indicate that the mechanisms of orthostatic failure are not strongly related to the way in which the body responds to the initial challenge. Additionally, the observation that some variables were predictive of tolerance before and not after tilt may indicate a change in the strategies used to maintain blood pressure, or differential adaptations to HDBR.  相似文献   

3.
In spaceflight human circadian rhythms and sleep patterns are likely subject to change, which consequently disturbs human physiology, cognitive abilities and performance efficiency. However, the influence of microgravity on sleep and circadian clock as well as the underlying mechanisms remain largely unknown. Placing volunteers in a prone position, whereby their heads rest at an angle of −6° below horizontal, mimics the microgravity environment in orbital flight. Such positioning is termed head-down bed rest (HDBR). In this work, we analysed the influence of a 45-day HDBR on physiological diurnal rhythms. We examined urinary electrolyte and hormone excretion, and the results show a dramatic elevation of cortisol levels during HDBR and recovery. Increased diuresis, melatonin and testosterone were observed at certain periods during HDBR. In addition, we investigated the changes in urination and defecation frequencies and found that the rhythmicity of urinary frequency during lights-off during and after HDBR was higher than control. The grouped defecation frequency data exhibits rhythmicity before and during HDBR but not after HDBR. Together, these data demonstrate that HDBR can alter a number of physiological processes associated with diurnal rhythms.  相似文献   

4.
Although orthostatic hypotension is a common clinical syndrome after spaceflight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), the pathophysiology remains unclear. The authors' hypothesis that a decrease in sympathetic nerve activity is the major pathophysiology underlying orthostatic hypotension after HDBR was tested in a study involving 14-day HDBR in 22 healthy subjects who showed no orthostatic hypotension during 15-min 60 degrees head-up tilt test (HUT) at baseline. After HDBR, 10 of 22 subjects demonstrated orthostatic hypotension during 60 degrees HUT. In subjects with orthostatic hypotension, total activity of muscle sympathetic nerve activity (MSNA) increased less during the first minute of 60 degrees HUT after HDBR (314% of resting supine activity) than before HDBR (523% of resting supine activity, P < 0.05) despite HDBR-induced reduction in plasma volume (13% of plasma volume before HDBR). The postural increase in total MSNA continued during several more minutes of 60 degrees HUT while arterial pressure was maintained. Thereafter, however, total MSNA was paradoxically suppressed by 104% of the resting supine level at the last minute of HUT (P < 0.05 vs. earlier 60 degrees HUT periods). The suppression of total MSNA was accompanied by a 22 +/- 4-mmHg decrease in mean blood pressure (systolic blood pressure <80 mmHg). In contrast, orthostatic activation of total MSNA was preserved throughout 60 degrees HUT in subjects who did not develop orthostatic hypotension. These data support the hypothesis that a decrease in sympathetic nerve activity is the major pathophysiological factor underlying orthostatic hypotension after HDBR. It appears that the diminished sympathetic activity, in combination with other factors associated with HDBR (e.g., hypovolemia), may predispose some individuals to postural hypotension.  相似文献   

5.
Yang CB  Wang YC  Gao Y  Geng J  Wu YH  Zhang Y  Shi F  Sun XQ 《Cytokine》2011,56(3):648-655
Cardiovascular and musculoskeletal deconditioning occurring in long-term spaceflight requires new strategies to counteract these adverse effects. We previously reported that a short-arm centrifuge produced artificial gravity (AG), together with ergometer, has an approving effect on promoting cardiovascular function. The current study sought to investigate whether the cardiac and cerebrovascular functions were maintained and improved using a strategy of AG combined with exercise training on cardiovascular function during 4-day head-down bed rest (HDBR). Twelve healthy male subjects were assigned to a control group (CONT, n=6) and an AG combined with ergometric exercise training group (CM, n=6). Simultaneously, cardiac pumping and systolic functions, cerebral blood flow were measured before, during, and after HDBR. The results showed that AG combined with ergometric exercise caused an increase trend of number of tolerance, however, there was no significant difference between the two groups. After 4-day HDBR in the CONT group, heart rate increased significantly (59±6 vs 66±7 beats/min), while stroke volume (98±12 vs 68±13 mL) and cardiac output (6±1 vs 4±1 L/min) decreased significantly (p<0.05). All subjects had similar drops on cerebral vascular function. Volume regulating hormone aldosterone increased in both groups (by 119.9% in CONT group and 112.8% in the CM group), but only in the CONT group there were a significant changes (p<0.05). Angiotensin II was significantly increased by 140.5% after 4-day HDBR in the CONT group (p<0.05), while no significant changes were observed in the CM group. These results indicated that artificial gravity with ergometric exercise successfully eliminated changes induced by simulated weightlessness in heart rate, volume regulating hormones, and cardiac pumping function and partially maintained cardiac systolic function. Hence, a daily 1h alternating +1.0 and +2.0 Gz with 40 W exercise training appear to be an effective countermeasure against cardiac deconditioning.  相似文献   

6.
We investigated the effect of head-down bed rest (HDBR) for 14 days on thermoregulatory sweating and cutaneous vasodilation in humans. Fluid intake was ad libitum during HDBR. We induced whole body heating by increasing skin temperature for 1 h with a water-perfused blanket through which hot water (42 degrees C) was circulated. The experimental room was air-conditioned (27 degrees C, 30-40% relative humidity). We measured skin blood flow (chest and forearm), skin temperatures (chest, upper arm, forearm, thigh, and calf), and tympanic temperature. We also measured sweat rate by the ventilated capsule method in which the skin area for measurement was drained by dry air conditioned at 27 degrees C under similar skin temperatures in both trials. We calculated cutaneous vascular conductance (CVC) from the ratio of skin blood flow to mean blood pressure. From tympanic temperature-sweat rate and -CVC relationships, we assessed the threshold temperature and sensitivity as the slope response of variables to a given change in tympanic temperature. HDBR increased the threshold temperature for sweating by 0.31 degrees C at the chest and 0.32 degrees C at the forearm, whereas it reduced sensitivity by 40% at the chest and 31% at the forearm. HDBR increased the threshold temperature for cutaneous vasodilation, whereas it decreased sensitivity. HDBR reduced plasma volume by 11%, whereas it did not change plasma osmolarity. The increase in the threshold temperature for sweating correlated with that for cutaneous vasodilation. In conclusion, HDBR attenuated thermoregulatory sweating and cutaneous vasodilation by increasing the threshold temperature and decreasing sensitivity. HDBR increased the threshold temperature for sweating and cutaneous vasodilation by similar magnitudes, whereas it decreased their sensitivity by different magnitudes.  相似文献   

7.
This study tested the hypothesis that cardiovascular and hormonal responses to lower body negative pressure (LBNP) would be altered by 4-h head down bed rest (HDBR) in 11 healthy young men. In post-HDBR testing, three subjects failed to finish the protocol due to presyncopal symptoms, heart rate was increased during LBNP compared with pre-HDBR, mean arterial blood pressure was elevated at 0, -10, and -20 mmHg and reduced at -40 mmHg, central venous pressure (CVP) and cardiac stroke volume were reduced at all levels of LBNP. Plasma concentrations of renin, angiotensin II, and aldosterone were significantly lower after HDBR. Renin and angiotensin II increased in response to LBNP only post-HDBR. There was no effect of HDBR or LBNP on norepinephrine while epinephrine tended to increase at -40 mmHg post-HDBR (P = 0.07). Total blood volume was not significantly reduced. Splanchnic blood flow taken from ultrasound measurement of the portal vein was higher at each level of LBNP post-compared with pre-HDBR. The gain of the cardiopulmonary baroreflex relating changes in total peripheral resistance to CVP was increased after HDBR, but splanchnic vascular resistance was actually reduced. These results are consistent with our hypothesis and suggest that cardiovascular instability following only 4-h HDBR might be related to altered hormonal and/or neural control of regional vascular resistance. Impaired ability to distribute blood away from the splanchnic region was associated with reduced stroke volume, elevated heart rate, and the inability to protect mean arterial pressure.  相似文献   

8.
This study tested the hypothesis that cardiovascular effects of sublingual nitroglycerin (NG) would be exaggerated after 56 days of 6° head-down bed rest (HDBR) in women, and that an aerobic and resistive exercise countermeasure (EX, n = 8) would reduce the effect compared with HDBR without exercise (CON, n = 7). Middle cerebral artery maximal blood flow velocity (CBFV), cardiac stroke volume (SV), and superficial femoral artery blood flow (Doppler ultrasound) were recorded at baseline rest and for 5 min following 0.3 mg sublingual NG. Post-HDBR, NG caused greater increases in heart rate (HR) in CON compared with EX (+24.9 ± 7.7 and +18.8 ± 6.6 beats/min, respectively, P < 0.0001). The increase in HR combined with reductions in SV to maintain cardiac output. Systolic, mean, and pulse pressures were reduced 5-10 mmHg by NG, but total peripheral resistance was only slightly reduced at 3 min after NG. Reductions in CBFV of -12.5 ± 3.8 cm/s were seen after NG, but a reduction in the Doppler resistance index suggested dilation of the middle cerebral artery with no differences after HDBR. The femoral artery dilated with NG and blood flow was reduced ~50% with the appearance of large negative waves suggesting a marked increase in downstream resistance, but there were no effects of HDBR. In general, responses of women to NG were not altered by HDBR; the greater increase in HR in CON but not EX was probably a consequence of cardiovascular deconditioning. These results contrast with the hypothesis and a previous investigation of men after HDBR by revealing no change in cardiovascular responses to exogenous nitric oxide.  相似文献   

9.
We tested the hypothesis that encouraged water drinking according to urine output for 20 days could ameliorate impaired thermoregulatory function under microgravity conditions. Twelve healthy men, aged 24 ± 1.5 years (mean ± SE), underwent −6° head-down bed rest (HDBR) for 20 days. During bed rest, subjects were encouraged to drink the same amount of water as the 24-h urine output volume of the previous day. A heat exposure test consisting of water immersion up to the knees at 42°C for 45 min after a 10 min rest (baseline) in the sitting position was performed 2 days before the 20-day HDBR (PRE), and 2 days after the 20-day HDBR (POST). Core temperature (tympanic), skin temperature, skin blood flow and sweat rate were recorded continuously. We found that the −6° HDBR did not increase the threshold temperature for onset of sweating under the encouraged water drinking regime. We conclude that encouraged water drinking could prevent impaired thermoregulatory responses after HDBR.  相似文献   

10.
This review presents data concerning metabolic rhythms with periods close to one hour (20 to 120 min): their occurrence, biochemical organization, nature, and significance for adaptations and age-related changes of cells and organs. Circahoralian (ultradian) rhythms have been detected for cell mass and size, protein synthesis, enzyme activities, concentration of ATP and hormones, cell respiration, and cytoplasm pH. Rhythms have been observed in bacteria, yeasts, and protozoa, as well as in many cells of metazoans, including mammals, in vivo and in cell cultures. In cell populations, the rhythms are organized by direct cell-cell communication. The biochemical mechanism involves membrane signal factors and cytoplasmic processes resulting in synchronization of individual oscillations to a common rhythm. Phosphorylation of proteins is the key process of coordination of protein synthesis and enzyme activity kinetics. The fractal nature of circahoralian rhythms is discussed as well as the involvement of these rhythms in adaptations of the cells and organs. Senescent decrease in rhythm amplitudes and correspondingly in cell-cell communication has been observed. The possibility of remodeling these changes through the intercellular medium has been predicted and experimentally shown. Perspectives for studies of the organizers and disorganizers of cell-cell communication in the intercellular medium along with appropriate receptors are discussed with special emphasis on aging and pathology. One perspective can be more precise definition of the range of normal biochemical and physiological state with the goal of correction of cellular functions.  相似文献   

11.
Astronauts usually work under much mental stress. However, it is unclear how and whether or not an exposure to microgravity affects physiological response to mental stress in humans. To examine effects of microgravity on vasomotor sympathetic and peripheral vasodilator responses to mental stress, we performed 10 min of mental arithmetic (MA) before and after 14 days of 6 degrees head-down bed rest (HDBR), a ground-based simulation of spaceflight. Total muscle sympathetic nerve activity (MSNA, measured by microneurography) slightly increased during MA before HDBR, and this increase was augmented after HDBR. Calf blood flow (measured by venous occlusion plethysmography) increased and calf vascular resistance (calculated by dividing mean blood pressure by calf blood flow) decreased during MA before HDBR, but these responses were abolished after HDBR. Increases in heart rate and mean blood pressure during MA were not different between before and after HDBR. These findings suggest that HDBR augmented vasomotor sympathoexcitation but attenuated vasodilatation in the calf muscle in response to mental stress.  相似文献   

12.
To study the effects of microgravity on the mechanisms involved in the regulation of body hydrous status, total body water (TBW), plasma volume (PV), and its main regulating hormones (plasma renin, aldosterone, atrial natriuretic peptide (ANP), anti-diuretic hormone (ADH)) were determined, by isotopic dilution, Dill and Costill's formula, and radio-immunologic dosages, in 9 male subjects submitted to a 90-d head-down bed rest (HDBR). ADH was determined in 24 h urinary collection as well as osmolality, sodium, and potassium. Body mass decreased (-2.8 +/- 0.8 kg) as well as TBW(-7.2% +/- 0.9%, i.e., -2.6 +/- 0.7 kg) and PV (-4.7% +/- 1.8%). Renin and aldosterone were enhanced (+109.0% +/- 15.4% and +87.2% +/- 38.9%, respectively). Simultaneously, we observed a decrease in ANP (-33.2% +/- 20.4%). Other variables, including ADH, were not affected by HDBR. Body mass and TBW decrease (and consequently lean body mass) are associated with muscle atrophy. Renin, aldostrerone, and ANP modifications are well explained by the decrease in PV, which was not enough to induce ADH changes. It suggests that in man, the main regulatory factor for ADH secretion is osmolality, when PV is modestly and progressively decreased without arterial pressure modification, which was the case in the present protocol.  相似文献   

13.
Space-flight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), cause cardiovascular deconditioning in humans. Because sympathetic vasoconstriction plays a very important role in circulation, we examined whether HDBR impairs alpha-adrenergic vascular responsiveness to sympathetic nerve activity. We subjected eight healthy volunteers to 14 days of HDBR and before and after HDBR measured calf muscle sympathetic nerve activity (MSNA; microneurography) and calf blood flow (venous occlusion plethysmography) during sympathoexcitatory stimulation (rhythmic handgrip exercise). HDBR did not change the increase in total MSNA (P = 0.97) or the decrease in calf vascular conductance (P = 0.32) during exercise, but it did augment the increase in calf vascular resistance (P = 0.0011). HDBR augmented the transduction gain from total MSNA into calf vascular resistance, assessed as the least squares linear regression slope of vascular resistance on total MSNA (0.05 +/- 0.02 before HDBR, 0.20 +/- 0.06 U.min-1.burst-1 after HDBR, P = 0.0075), but did not change the transduction gain into calf vascular conductance (P = 0.41). Our data indicate that alpha-adrenergic vascular responsiveness to sympathetic nerve activity is preserved in the supine position after HDBR in humans.  相似文献   

14.
A most important function of the circadian system is to ensure that behaviors and metabolism are appropriately timed with respect to the light/dark cycle and photoperiod. Ecological constraints can perturb the daily schedules; would they also impair photoperiodic adaptations? A natural model exists in the golden spiny mouse (Acomys russatus), which is nocturnal, but driven into diurnal activity when sharing the habitat with its congener, A. cahirinus. We show here that the presence of A. cahirinus alters the diurnal rhythms of body temperature and urine volume, delays excretion of the major melatonin metabolite, 6-sulfatoxymelatonin (6-SMT), and increases 2-deoxyglucose uptake by the suprachiasmatic nuclei in A. russatus. Nevertheless, a clear photoperiod effect on urine volume and 6-SMT rhythms was observed. These results indicate that the circadian system can adapt to major changes in daily scheduling without impairing daylength measurement, and consequently seasonal adaptation.  相似文献   

15.
This study tested the hypothesis that head-down tilt bed rest (HDBR) reduces adrenergic and nonadrenergic cutaneous vasoconstrictor responsiveness. Additionally, an exercise countermeasure group was included to identify whether exercise during bed rest might counteract any vasoconstrictor deficits that arose during HDBR. Twenty-two subjects underwent 14 days of strict 6 degrees HDBR. Eight of these 22 subjects did not exercise during HDBR, while 14 of these subjects exercised on a supine cycle ergometer for 90 min a day at 75% of pre-bed rest heart rate maximum. To assess alpha-adrenergic vasoconstrictor responsiveness, intradermal microdialysis was used to locally administer norepinephrine (NE), while forearm skin blood flow (SkBF; laser-Doppler flowmetry) was monitored over microdialysis membranes. Nonlinear regression modeling was used to identify the effective drug concentration that caused 50% of the cutaneous vasoconstrictor response (EC(50)) and minimum values from the SkBF-NE dose-response curves. In addition, the effects of HDBR on nonadrenergic cutaneous vasoconstriction were assessed via the venoarteriolar response of the forearm and leg. HDBR did not alter EC(50) or the magnitude of cutaneous vasoconstriction to exogenous NE administration regardless of whether the subjects exercised during HDBR. Moreover, HDBR did not alter the forearm venoarteriolar response in either the control or exercise groups during HDBR. However, HDBR significantly reduced the magnitude of cutaneous vasoconstriction due to the venoarteriolar response in the leg, and this response was similarly reduced in the exercise group. These data suggest that HDBR does not alter cutaneous vasoconstrictor responses to exogenous NE administration, whereas cutaneous vasoconstriction of the leg due to the venoarteriolar response is reduced after HDBR. It remains unclear whether attenuated venoarteriolar responses in the lower limbs contribute to reduced orthostatic tolerance after bed rest and spaceflight.  相似文献   

16.
The purpose of the present study is to examine the changes in the arterial baroreflex control of muscle sympathetic nerve activity (MSNA) after head-down bed rest (HDBR), in relation to orthostatic hypotension after HDBR. Therefore, we performed 60 degrees head-up tilt (HUT) tests before and after 14 days of HDBR, with monitoring MSNA, heart rate and blood pressure. We calculated the gain of the arterial baroreflex control of MSNA, and compared the gains between the subjects who did (defined as the fainters) and those who did not (defined as the nonfainters) become presyncopal in HUT tests after HDBR.  相似文献   

17.
The epinephrine (Epi)-induced effects on the sympathetic nervous system (SNS) and metabolic functions were studied in men before and during a decrease in SNS activity achieved through simulated microgravity. Epi was infused at 3 graded rates (0.01, 0.02, and 0. 03 microg. kg(-1). min(-1) for 40 min each) before and on the fifth day of head-down bed rest (HDBR). The effects of Epi on the SNS (assessed by plasma norepinephrine levels and spectral analysis of systolic blood pressure and heart rate variability), on plasma levels of glycerol, nonesterified fatty acids (NEFA), glucose and insulin, and on energy expenditure were evaluated. HDBR decreased urinary norepinephrine excretion (28.1 +/- 4.2 vs. 51.5 +/- 9.1 microg/24 h) and spectral variability of systolic blood pressure in the midfrequency range (16.3 +/- 1.9 vs. 24.5 +/- 0.9 normalized units). Epi increased norepinephrine plasma levels (P < 0.01) and spectral variability of systolic blood pressure (P < 0.009) during, but not before, HDBR. No modification of Epi-induced changes in heart rate and systolic and diastolic blood pressures were observed during HDBR. Epi increased plasma glucose, insulin, and NEFA levels before and during HDBR. During HDBR, the Epi-induced increase in plasma glycerol and lactate levels was more pronounced than before HDBR (P < 0.005 and P < 0.001, respectively). Epi-induced energy expenditure was higher during HDBR (P < 0.02). Our data suggest that the increased effects of Epi during simulated microgravity could be related to both the increased SNS response to Epi infusion and/or to the beta-adrenergic receptor sensitization of end organs, particularly in adipose tissue and skeletal muscle.  相似文献   

18.
We tested the hypotheses that women completing 56 days, 6 degrees head-down bed-rest (HDBR) would have changes in sensitivity of cardiovascular responses to adrenergic receptor stimulation and that frequent aerobic and resistive exercise would prevent these changes. Twenty-four women, eight controls, eight exercisers (lower body negative pressure treadmill and flywheel resistance exercise), and eight receiving nutritional supplement but no exercise were studied in baseline and during administration of the beta-agonist isoproterenol (ISO) and the alpha- and beta-agonist norepinephrine (NOR). In the control and nutrition groups, HDBR increased heart rate (HR) and reduced stroke volume (SV), and there was a significantly greater increase in HR with ISO after HDBR. In contrast, the HR and SV of the exercise group were unchanged from pre-HDBR. After HDBR, leg vascular resistance (LVR) was greater than pre-HDBR in the exercise group but reduced in control and nutrition. LVR was reduced with ISO and increased with NOR. Changes in total peripheral resistance were similar to those of LVR but of smaller magnitude, perhaps because changes in cerebrovascular resistance index were directionally opposite to those of LVR. There were no changes in sensitivity of the vascular resistance responses to adrenergic stimulation. The HR response might reflect a change in sensitivity or a necessary response to the reduction in SV after HDBR in control and nutrition groups. The reduced peripheral vascular resistance after HDBR might help to explain orthostatic intolerance in women. Exercise was an effective countermeasure to the HDBR effects.  相似文献   

19.
To examine how long-lasting microgravity simulated by 6 degrees head-down bed rest (HDBR) induces changes in the baroreflex control of muscle sympathetic nerve activity (MSNA) at rest and changes in responses of MSNA to orthostasis, six healthy male volunteers (range 26-42 yr) participated in Valsalva maneuver and head-up tilt (HUT) tests before and after 120 days of HDBR. MSNA was measured directly using a microneurographic technique. After long-term HDBR, resting supine MSNA and heart rate were augmented. The baroreflex slopes for MSNA during Valsalva maneuver (in supine position) and during 60 degrees HUT test, determined by least-squares linear regression analysis, were significantly steeper after than before HDBR, whereas the baroreflex slopes for R-R interval were significantly flatter after HDBR. The increase in MSNA from supine to 60 degrees HUT was not different between before and after HDBR, but mean blood pressure decreased in 60 degrees HUT after HDBR. In conclusion, the baroreflex control of MSNA was augmented, whereas the same reflex control of R-R interval was attenuated after 120 days of HDBR.  相似文献   

20.
Physical inactivity induced by head-down bed rest (HDBR) affects body composition (BC). Leptin is involved in BC regulation by acting on fuel homeostasis. We investigated whether leptin and counterregulatory hormone levels are affected by a 7-day HDBR. Fasting blood was sampled daily (0700) in males (n = 8) and on alternating days in females (n = 8) for measurements of leptin, insulin, norepinephrine (NE), epinephrine (Epi), growth hormone (GH), cortisol, nonesterified fatty acid (NEFA), and glucose. BC was measured by H(2)(18)O dilution. Energy intake (men 10.5 +/- 0.2 MJ/day, women 7.9 +/- 0.3 MJ/day) and BC were unchanged by HDBR. Increased levels of leptin (men 40%, P = 0.003; women 20%, P = 0. 050), insulin (men 34%, P = 0.018; women 25%, P = 0.022), and the insulin-to-glucose ratio (men 30%, P = 0.049; women 25%, P = 0.031) were noted. GH, NE, Epi, and cortisol levels were unaltered. NEFA dropped in both sexes, but glucose decreased only in women. In conclusion, HDBR increased leptin levels independently of stress response, changes in fat mass, energy intake, or gender. These changes were correlated to the insulin-resistance development in men. Further analyses are required, but the results have to be considered for longer HDBR periods with 1) the well-described drop in energy intake and 2) the BC changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号