首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was performed to test the hypothesis that application of lower body positive pressure (LBPP) during orthostasis would reduce the baroreflex-mediated enhancement in sympathetic activity in humans. Eight healthy young men were exposed to a 70 degrees head-up tilt (HUT) on application of 30 mmHg LBPP. Muscle sympathetic nerve activity (MSNA) was microneurographically recorded from the tibial nerve, along with hemodynamic variables. We found that in the supine position with LBPP, MSNA remained unchanged (13.4 +/- 3.3 vs. 11.8 +/- 2.3 bursts/min, without vs. with LBPP; P > 0.05), mean arterial pressure was elevated, but arterial pulse pressure and heart rate did not alter. At 70 degrees HUT with LBPP, the enhanced MSNA response was reduced (33.8 +/- 5.0 vs. 22.5 +/- 2.2 bursts/min, without vs. with LBPP; P < 0.05), mean arterial pressure was higher, the decreased pulse pressure was restored, and the increased heart rate was attenuated. We conclude that the baroreflex-mediated enhancement in sympathetic activity during HUT was reduced by LBPP. Application of LBPP in HUT induced an obvious cephalad fluid shift as well as a restoration of arterial pulse pressure, which reduced the inhibition of the baroreceptors. However, the activation of the intramuscular mechanoreflexes produced by 30 mmHg LBPP might counteract the effects of baroreflexes.  相似文献   

2.
Although orthostatic hypotension is a common clinical syndrome after spaceflight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), the pathophysiology remains unclear. The authors' hypothesis that a decrease in sympathetic nerve activity is the major pathophysiology underlying orthostatic hypotension after HDBR was tested in a study involving 14-day HDBR in 22 healthy subjects who showed no orthostatic hypotension during 15-min 60 degrees head-up tilt test (HUT) at baseline. After HDBR, 10 of 22 subjects demonstrated orthostatic hypotension during 60 degrees HUT. In subjects with orthostatic hypotension, total activity of muscle sympathetic nerve activity (MSNA) increased less during the first minute of 60 degrees HUT after HDBR (314% of resting supine activity) than before HDBR (523% of resting supine activity, P < 0.05) despite HDBR-induced reduction in plasma volume (13% of plasma volume before HDBR). The postural increase in total MSNA continued during several more minutes of 60 degrees HUT while arterial pressure was maintained. Thereafter, however, total MSNA was paradoxically suppressed by 104% of the resting supine level at the last minute of HUT (P < 0.05 vs. earlier 60 degrees HUT periods). The suppression of total MSNA was accompanied by a 22 +/- 4-mmHg decrease in mean blood pressure (systolic blood pressure <80 mmHg). In contrast, orthostatic activation of total MSNA was preserved throughout 60 degrees HUT in subjects who did not develop orthostatic hypotension. These data support the hypothesis that a decrease in sympathetic nerve activity is the major pathophysiological factor underlying orthostatic hypotension after HDBR. It appears that the diminished sympathetic activity, in combination with other factors associated with HDBR (e.g., hypovolemia), may predispose some individuals to postural hypotension.  相似文献   

3.
Acute alcohol consumption is reported to decrease mean arterial pressure (MAP) during orthostatic challenge, a response that may contribute to alcohol-mediated syncope. Muscle sympathetic nerve activity (MSNA) increases during orthostatic stress to help maintain MAP, yet the effects of alcohol on MSNA responses during orthostatic stress have not been determined. We hypothesized that alcohol ingestion would blunt arterial blood pressure and MSNA responses to lower body negative pressure (LBNP). MAP, MSNA, and heart rate (HR) were recorded during progressive LBNP (-5, -10, -15, -20, -30, and -40 mmHg; 3 min/stage) in 30 subjects (age 24 ± 1 yr). After an initial progressive LBNP (pretreatment), subjects consumed either alcohol (0.8 g ethanol/kg body mass; n = 15) or placebo (n = 15), and progressive LBNP was repeated (posttreatment). Alcohol increased resting HR (59 ± 2 to 65 ± 2 beats/min, P < 0.05), MSNA (13 ± 3 to 19 ± 4 bursts/min, P < 0.05), and MSNA burst latency (1,313 ± 16 to 1,350 ± 17 ms, P < 0.05) compared with placebo (group × treatment interactions, P < 0.05). During progressive LBNP, a pronounced decrease in MAP was observed after alcohol but not placebo (group × time × treatment, P < 0.05). In contrast, MSNA and HR increased during all LBNP protocols, but there were no differences between trials or groups. However, alcohol altered MSNA burst latency response to progressive LBNP. In conclusion, the lack of MSNA adjustment to a larger drop in arterial blood pressure during progressive LBNP, coupled with altered sympathetic burst latency responses, suggests that alcohol blunts MSNA responses to orthostatic stress.  相似文献   

4.
The mechanism(s) for post-bed rest (BR) orthostatic intolerance is equivocal. The vestibulosympathetic reflex contributes to postural blood pressure regulation. It was hypothesized that muscle sympathetic nerve responses to otolith stimulation would be attenuated by prolonged head-down BR. Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and peripheral vascular conductance were measured during head-down rotation (HDR; otolith organ stimulation) in the prone posture before and after short-duration (24 h; n = 22) and prolonged (36 ± 1 day; n = 8) BR. Head-up tilt at 80° was performed to assess orthostatic tolerance. After short-duration BR, MSNA responses to HDR were preserved (Δ5 ± 1 bursts/min, Δ53 ± 13% burst frequency, Δ65 ± 13% total activity; P < 0.001). After prolonged BR, MSNA responses to HDR were attenuated ~50%. MSNA increased by Δ8 ± 2 vs. Δ3 ± 2 bursts/min and Δ83 ± 12 vs. Δ34 ± 22% total activity during HDR before and after prolonged BR, respectively. Moreover, these results were observed in three subjects tested again after 75 ± 1 days of BR. This reduction in MSNA responses to otolith organ stimulation at 5 wk occurred with reductions in head-up tilt duration. These results indicate that prolonged BR (~5 wk) unlike short-term BR (24 h) attenuates the vestibulosympathetic reflex and possibly contributes to orthostatic intolerance following BR in humans. These results suggest a novel mechanism in the development of orthostatic intolerance in humans.  相似文献   

5.
Recent studies indicate that nonhypotensive orthostatic stress in humans causes reflex vasoconstriction in the forearm but not in the calf. We used microelectrode recordings of muscle sympathetic nerve activity (MSNA) from the peroneal nerve in conscious humans to determine if unloading of cardiac baroreceptors during nonhypotensive lower body negative pressure (LBNP) increases sympathetic discharge to the leg muscles. LBNP from -5 to -15 mmHg had no effect on arterial pressure or heart rate but caused graded decreases in central venous pressure and corresponding large increases in peroneal MSNA. Total MSNA (burst frequency X mean burst amplitude) increased by 61 +/- 22% (P less than 0.05 vs. control) during LBNP at only -5 mmHg and rose progressively to a value that was 149 +/- 29% greater than control during LBNP at -15 mmHg (P less than 0.05). The major new conclusion is that nonhypotensive LBNP is a potent stimulus to muscle sympathetic outflow in the leg as well as the arm. During orthostatic stress in humans, the cardiac baroreflex appears to trigger a mass sympathetic discharge to the skeletal muscles in all of the extremities.  相似文献   

6.
Sympathetic activation during orthostatic stress is accompanied by a marked increase in low-frequency (LF, approximately 0.1-Hz) oscillation of sympathetic nerve activity (SNA) when arterial pressure (AP) is well maintained. However, LF oscillation of SNA during development of orthostatic neurally mediated syncope remains unknown. Ten healthy subjects who developed head-up tilt (HUT)-induced syncope and 10 age-matched nonsyncopal controls were studied. Nonstationary time-dependent changes in calf muscle SNA (MSNA, microneurography), R-R interval, and AP (finger photoplethysmography) variability during a 15-min 60 degrees HUT test were assessed using complex demodulation. In both groups, HUT during the first 5 min increased heart rate, magnitude of MSNA, LF and respiratory high-frequency (HF) amplitudes of MSNA variability, and LF and HF amplitudes of AP variability but decreased HF amplitude of R-R interval variability (index of cardiac vagal nerve activity). In the nonsyncopal group, these changes were sustained throughout HUT. In the syncopal group, systolic AP decreased from 100 to 60 s before onset of syncope; LF amplitude of MSNA variability decreased, whereas magnitude of MSNA and LF amplitude of AP variability remained elevated. From 60 s before onset of syncope, MSNA and heart rate decreased, index of cardiac vagal nerve activity increased, and AP further decreased to the level at syncope. LF oscillation of MSNA variability decreased during development of orthostatic neurally mediated syncope, preceding sympathetic withdrawal, bradycardia, and severe hypotension, to the level at syncope.  相似文献   

7.
Aging attenuates the increase in muscle sympathetic nerve activity (MSNA) and elicits hypotension during otolith organ engagement in humans. The purpose of the present study was to determine the neural and cardiovascular responses to otolithic engagement during orthostatic stress in older adults. We hypothesized that age-related impairments in the vestibulosympathetic reflex would persist during orthostatic challenge in older subjects and might compromise arterial blood pressure regulation. MSNA, arterial blood pressure, and heart rate responses to head-down rotation (HDR) performed with and without lower body negative pressure (LBNP) in prone subjects were measured. Ten young (27 +/- 1 yr) and 11 older subjects (64 +/- 1 yr) were studied prospectively. HDR performed alone elicited an attenuated increase in MSNA in older subjects (Delta106 +/- 28 vs. Delta20 +/- 7% for young and older subjects). HDR performed during simultaneous orthostatic stress increased total MSNA further in young (Delta53 +/- 15%; P < 0.05) but not older subjects (Delta-5 +/- 4%). Older subjects demonstrated consistent significant hypotension during HDR performed both alone (Delta-6 +/- 2 mmHg) and during LBNP (Delta-7 +/- 2 mmHg). These data provide experimental support for the concept that age-related impairments in the vestibulosympathetic reflex persist during orthostatic challenge in older adults. Furthermore, these findings are consistent with the concept that age-related alterations in vestibular function might contribute to altered orthostatic blood pressure regulation with age in humans.  相似文献   

8.
Sympathetic outflow increases during head-up tilt (HUT) to stabilize blood pressure in the presence of decreases in venous return and stroke volume (SV). Otherwise, orthostatic hypotension would develop. Gender differences in orthostatic tolerance have been noted but the mechanisms are still uncertain. More recently, Waters et al. reported in a limited sample, greater susceptibility of women to demonstrate orthostatic intolerance following space flight. Therefore, it is important to understand gender differences in reflex blood pressure regulation. Recently, we reported smaller increments in muscle sympathetic nerve activity (MSNA) in healthy women during graded HUT and a non-baroreflex cold pressor test. The purpose of this report is to examine the hypothesis that gender differences in blood pressure control during HUT are related to important variations in MSNA discharge patterns.  相似文献   

9.
We tested the hypothesis that orthostatic stress would modulate the arterial baroreflex (ABR)-mediated beat-by-beat control of muscle sympathetic nerve activity (MSNA) in humans. In 12 healthy subjects, ABR control of MSNA (burst incidence, burst strength, and total activity) was evaluated by analysis of the relation between beat-by-beat spontaneous variations in diastolic blood pressure (DAP) and MSNA during supine rest (CON) and at two levels of lower body negative pressure (LBNP: -15 and -35 mmHg). At -15 mmHg LBNP, the relation between burst incidence (bursts per 100 heartbeats) and DAP showed an upward shift from that observed during CON, but the further shift seen at -35 mmHg LBNP was only marginal. The relation between burst strength and DAP was shifted upward at -15 mmHg LBNP (vs. CON) and further shifted upward at -35 mmHg LBNP. At -15 mmHg LBNP, the relation between total activity and DAP was shifted upward from that obtained during CON and further shifted upward at -35 mmHg LBNP. These results suggest that ABR control of MSNA is modulated during orthostatic stress and that the modulation is different between a mild (nonhypotensive) and a moderate (hypotensive) level of orthostatic stress.  相似文献   

10.
The purpose of this project was to test the hypothesis that increases in muscle sympathetic nerve activity (MSNA) during an orthostatic challenge is attenuated in heat-stressed individuals. To accomplish this objective, MSNA was measured during graded lower body negative pressure (LBNP) in nine subjects under normothermic and heat-stressed conditions. Progressive LBNP was applied at -3, -6, -9, -12, -15, -18, -21, and -40 mmHg for 2 min per stage. Whole body heating caused significant increases in sublingual temperature, skin blood flow, sweat rate, heart rate, and MSNA (all P < 0.05) but not in mean arterial blood pressure (P > 0.05). Progressive LBNP induced significant increases in MSNA in both thermal conditions. However, during the heat stress trial, increases in MSNA at LBNP levels higher than -9 mmHg were greater compared with during the same LBNP levels in normothermia (all P < 0.05). These data suggest that the increase in MSNA to orthostatic stress is not attenuated but rather accentuated in heat-stressed humans.  相似文献   

11.
We tested the hypothesis that women have blunted sympathetic neural responses to orthostatic stress compared with men, which may be elicited under hypovolemic conditions. Muscle sympathetic nerve activity (MSNA) and hemodynamics were measured in eight healthy young women and seven men in supine position and during 6 min of 60 degrees head-up tilt (HUT) under normovolemic and hypovolemic conditions (randomly), with approximately 4-wk interval. Acute hypovolemia was produced by diuretic (furosemide) administration approximately 2 h before testing. Orthostatic tolerance was determined by progressive lower body negative pressure to presyncope. We found that furosemide produced an approximately 13% reduction in plasma volume, causing a similar increase in supine MSNA in men and women (mean +/- SD of 5 +/- 7 vs. 6 +/- 5 bursts/min; P = 0.895). MSNA increased during HUT and was greater in the hypovolemic than in the normovolemic condition (32 +/- 6 bursts/min in normovolemia vs. 44 +/- 15 bursts/min in hypovolemia in men, P = 0.055; 35 +/- 9 vs. 45 +/- 8 bursts/min in women, P < 0.001); these responses were not different between the genders (gender effect: P = 0.832 and 0.814 in normovolemia and hypovolemia, respectively). Total peripheral resistance increased proportionately with increases in MSNA during HUT; these responses were similar between the genders. However, systolic blood pressure was lower, whereas diastolic blood pressure was similar in women compared with men during HUT, which was associated with a smaller stroke volume or stroke index. Orthostatic tolerance was lower in women, especially under hypovolemic conditions. These results indicate that men and women have comparable sympathetic neural responses during orthostatic stress under normovolemic and hypovolemic conditions. The lower orthostatic tolerance in women is predominantly because of a smaller stroke volume, presumably due to less cardiac filling during orthostasis, especially under hypovolemic conditions, which may overwhelm the vasomotor reserve available for vasoconstriction or precipitate neurally mediated sympathetic withdrawal and syncope.  相似文献   

12.
Head-up tilt table experiments conducted in astronauts prior to and immediately after the NASA Neurolab Space Mission (STS-90) revealed that a reduction in stroke volume induced by moving from the supine to upright posture was associated with increased muscle sympathetic nerve activity (MSNA). Although this finding was not unexpected, lower average stroke volume and greater average MSNA measured after space flight in both supine and upright postures were positioned in a linear fashion on the same stroke volume-MSNA stimulus-response relationship as the average pre-flight stroke volume and MSNA responses. Since all astronauts who participated in the Neurolab orthostatic experiments completed the 10-min tilt table tests, these observations supported the notion that sympathetic reflex responses were not altered but functioned adequately after space flight in non-presyncopal subjects. In contrast to the Neurolab results, development of orthostatic hypotension and presyncopal events reported in astronauts during standing after space flight have been accompanied by attenuated peripheral vasoconstriction and less elevation in plasma concentrations of norepinephrine. The association between circulating norepinephrine (NE) and peripheral vascular resistance in presyncopal astronauts after space flight led to the conclusion that postflight presyncope can be attributed to a combination of inherently low-resistance responses, a strong dependence on volume status, and relative hypoadrenergic function. In the present investigation, we used graded levels of lower body negative pressure (LBNP) to produce linear reductions in stroke volume and performed direct measurements of MSNA to test the hypotheses that (1) elevations in MSNA during central hypovolemia are proportional (i.e., linear) with reductions in stroke volume and; (2) that the slope of the stroke volume-MSNA relationship will be reduced in presyncopal subjects.  相似文献   

13.
Volume expansion often ameliorates symptoms of orthostatic intolerance; however, the influence of this increased volume on integrated baroreflex control of vascular sympathetic activity is unknown. We tested whether acute increases in central venous pressure (CVP) diminished subsequent responsiveness of muscle sympathetic nerve activity (MSNA) to rapid changes in arterial pressure. We studied healthy humans under three separate conditions: control, acute 10 degrees head-down tilt (HDT), and saline infusion (SAL). In each condition, heart rate, arterial pressure, CVP, and peroneal MSNA were measured during 5 min of rest and then during rapid changes in arterial pressure induced by sequential boluses of nitroprusside and phenylephrine (modified Oxford technique). Sensitivities of integrated baroreflex control of MSNA and heart rate were assessed as the slopes of the linear portions of the MSNA-diastolic blood pressure and R-R interval-systolic pressure relations, respectively. CVP increased approximately 2 mmHg in both SAL and HDT conditions. Resting heart rate and mean arterial pressure were not different among trials. Sensitivity of baroreflex control of MSNA was decreased in both SAL and HDT condition, respectively: -3.1 +/- 0.6 and -3.3 +/- 1.0 versus -5.0 +/- 0.6 units.beat(-1).mmHg(-1) (P < 0.05 for SAL and HDT vs. control). Sensitivity of baroreflex control of the heart was not different among conditions. Our results indicate that small increases in CVP decrease the sensitivity of integrated baroreflex control of sympathetic nerve activity in healthy humans.  相似文献   

14.
Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subjects during both normothermic and skin surface cooling conditions, while baroreflex control of MSNA and heart rate were assessed during rapid pharmacologically induced changes in arterial blood pressure. Skin surface cooling decreased mean skin temperature (34.9 +/- 0.2 to 29.8 +/- 0.6 degrees C; P < 0.001) and increased mean arterial blood pressure (85 +/- 2 to 93 +/- 3 mmHg; P < 0.001) without changing MSNA (P = 0.47) or heart rate (P = 0.21). The slope of the relationship between MSNA and diastolic blood pressure during skin surface cooling (-3.54 +/- 0.29 units.beat(-1).mmHg(-1)) was not significantly different from normothermic conditions (-2.94 +/- 0.21 units.beat(-1).mmHg(-1); P = 0.19). The slope depicting baroreflex control of heart rate was also not altered by skin surface cooling. However, skin surface cooling shifted the "operating point" of both baroreflex curves to high arterial blood pressures (i.e., rightward shift). Resetting baroreflex curves to higher pressure might contribute to the elevations in orthostatic tolerance associated with skin surface cooling.  相似文献   

15.
Arterial hypocapnia has been associated with orthostatic intolerance. Therefore, we tested the hypothesis that hypocapnia may be detrimental to increases in muscle sympathetic nerve activity (MSNA) and total peripheral resistance (TPR) during head-up tilt (HUT). Ventilation was increased approximately 1.5 times above baseline for each of three conditions, whereas end-tidal PCO(2) (PET(CO(2))) was clamped at normocapnic (Normo), hypercapnic (Hyper; +5 mmHg relative to Normo), and hypocapnic (Hypo; -5 mmHg relative to Normo) conditions. MSNA (microneurography), heart rate, blood pressure (BP, Finapres), and cardiac output (Q, Doppler) were measured continuously during supine rest and 45 degrees HUT. The increase in heart rate when changing from supine to HUT (P < 0.001) was not different across PET(CO(2)) conditions. MSNA burst frequency increased similarly with HUT in all conditions (P < 0.05). However, total MSNA and the increase in total amplitude relative to baseline (%DeltaMSNA) increased more when changing to HUT during Hypo compared with Hyper (P < 0.05). Both BP and Q were higher during Hyper than both Normo and Hypo (main effect; P < 0.05). Therefore, the MSNA response to HUT varied inversely with levels of PET(CO(2)). The combined data suggest that augmented cardiac output with hypercapnia sustained blood pressure during HUT leading to a diminished sympathetic response.  相似文献   

16.
Muscle sympathetic nerve activity (MSNA) is altered by vestibular otolith stimulation. This study examined interactive effects of the vestibular system and baroreflexes on MSNA in humans. In study 1, MSNA was measured during 4 min of lower body negative pressure (LBNP) at either -10 or -30 mmHg with subjects in prone posture. During the 3rd min of LBNP, subjects lowered their head over the end of a table (head-down rotation, HDR) to engage the otolith organs. The head was returned to baseline upright position during the 4th min. LBNP increased MSNA above baseline during both trials with greater increases during the -30-mmHg trial. HDR increased MSNA further during the 3rd min of LBNP at -10 and -30 mmHg (Delta32% and Delta34%, respectively; P < 0.01). MSNA returned to pre-HDR levels during the 4th min of LBNP when the head was returned upright. In study 2, MSNA was measured during HDR, LBNP, and simultaneously performed HDR and LBNP. The sum of MSNA responses during individual HDR and LBNP trials was not significantly different from that observed during HDR and LBNP performed together (Delta131 +/- 28 vs. Delta118 +/- 47 units and Delta340 +/- 77 vs. Delta380 +/- 90 units for the -10 and -30 trials, respectively). These results demonstrate that vestibular otolith stimulation can increase MSNA during unloading of the cardiopulmonary and arterial baroreflexes. Also, the interaction between the vestibulosympathetic reflex and baroreflexes is additive in humans. These studies indicate that the vestibulosympathetic reflex may help defend against orthostatic challenges in humans by increasing sympathetic outflow.  相似文献   

17.
The purpose of the present study is to examine the changes in the arterial baroreflex control of muscle sympathetic nerve activity (MSNA) after head-down bed rest (HDBR), in relation to orthostatic hypotension after HDBR. Therefore, we performed 60 degrees head-up tilt (HUT) tests before and after 14 days of HDBR, with monitoring MSNA, heart rate and blood pressure. We calculated the gain of the arterial baroreflex control of MSNA, and compared the gains between the subjects who did (defined as the fainters) and those who did not (defined as the nonfainters) become presyncopal in HUT tests after HDBR.  相似文献   

18.
Recent evidence suggests that young men and women may have different strategies for regulating arterial blood pressure, and the purpose of the present study was to determine if sex differences exist in diastolic arterial pressure (DAP) and muscle sympathetic nerve activity (MSNA) relations during simulated orthostatic stress. We hypothesized that young men would demonstrate stronger DAP-MSNA coherence and a greater percentage of "consecutive integrated bursts" during orthostatic stress. Fourteen men and 14 women (age 23 ± 1 yr) were examined at rest and during progressive lower body negative pressure (LBNP; -5 to -40 mmHg). Progressive LBNP did not alter mean arterial pressure (MAP) in either sex. Heart rate increased and stroke volume decreased to a greater extent during LBNP in women (interactions, P < 0.05). DAP-MSNA coherence was strong (i.e., r ≥ 0.5) at rest and increased throughout all LBNP stages in men. In contrast, DAP-MSNA coherence was lower in women, and responses to progressive LBNP were attenuated compared with men (time × sex, P = 0.029). Men demonstrated a higher percentage of consecutive bursts during all stages of LBNP (sex, P < 0.05), although the percentage of consecutive bursts increased similarly during progressive LBNP between sexes. In conclusion, men and women demonstrate different firing patterns of integrated MSNA during LBNP that appear to be related to differences in DAP oscillatory patterns. Men tend to have more consecutive bursts, which likely contribute to a stronger DAP-MSNA coherence. These findings may help explain why young women are more prone to orthostatic intolerance.  相似文献   

19.
Bed rest reduces orthostatic tolerance. Despite decades of study, the cause of this phenomenon remains unclear. In this report we examined hemodynamic and sympathetic nerve responses to graded lower body negative pressure (LBNP) before and after 24 h of bed rest. LBNP allows for baroreceptor disengagement in a graded fashion. We measured heart rate (HR), cardiac output (HR x stroke volume obtained by echo Doppler), and muscle sympathetic nerve activity (MSNA) during a progressive and graded LBNP paradigm. Negative pressure was increased by 10 mmHg every 3 min until presyncope or completion of -60 mmHg. After bed rest, LBNP tolerance was reduced in 11 of 13 subjects (P <.023), HR was greater (P <.002), cardiac output was unchanged, and the ability to augment MSNA at high levels of LBNP was reduced (rate of rise for 30- to 60-mmHg LBNP before bed rest 0.073 bursts x min(-1) x mmHg(-1); after bed rest 0.035 bursts x min(-1) x mmHg(-1); P < 0.016). These findings suggest that 24 h of bed rest reduces sympathetic nerve responses to LBNP.  相似文献   

20.
Cardiovascular deconditioning reduces orthostatic tolerance. To determine whether changes in autonomic function might produce this effect, we developed stimulus-response curves relating limb vascular resistance, muscle sympathetic nerve activity (MSNA), and pulmonary capillary wedge pressure (PCWP) with seven subjects before and after 18 days of -6 degrees head-down bed rest. Both lower body negative pressure (LBNP; -15 and -30 mmHg) and rapid saline infusion (15 and 30 ml/kg body wt) were used to produce a wide variation in PCWP. Orthostatic tolerance was assessed with graded LBNP to presyncope. Bed rest reduced LBNP tolerance from 23.9 +/- 2.1 to 21.2 +/- 1.5 min, respectively (means +/- SE, P = 0.02). The MSNA-PCWP relationship was unchanged after bed rest, though at any stage of the LBNP protocol PCWP was lower, and MSNA was greater. Thus bed rest deconditioning produced hypovolemia, causing a shift in operating point on the stimulus-response curve. The relationship between limb vascular resistance and MSNA was not significantly altered after bed rest. We conclude that bed rest deconditioning does not alter reflex control of MSNA, but may produce orthostatic intolerance through a combination of hypovolemia and cardiac atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号