首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most life history traits are positively influenced by body size, whereas disadvantages of large body size are poorly documented. To investigate presumed intrinsic costs of large size in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae), we established two replicates each of three body size laboratory selection lines (small, control and large; selection on males only), and subjected flies of the resulting extended body size range to various abiotic stresses. Response to selection was symmetrical in the small and large lines (realized h(2) = 0.16-0.18). After 24 generations of selection body size had changed by roughly 10%. Female size showed a correlated response to selection on male size, whereas sexual size dimorphism did not change. Development time also showed a correlated response as, similar to food limited flies, small line flies emerged earlier at smaller body size. At the lowest larval food limit possible, flies of all lines emerged at the same small body size after roughly the same development time; so overall phenotypic plasticity in body size and development time strongly increased following selection. Juvenile mortality increased markedly when food was extremely limited, large line flies showing highest mortality. Winter frost disproportionately killed large (line) flies because of their longer development times. Mortality at high temperatures was high but size-selective effects were inconsistent. In all environments the larger males suffered more. Initial growth rate was higher for males and at unlimited food. Small line individuals of both sexes grew slowest at unlimited larval food but fastest at limited larval food, suggesting a physiological cost of fast growth. Overall, extension of the natural body size range by artificial selection revealed some otherwise cryptic intrinsic juvenile viability costs of large size, mediated by longer development or faster growth, but only in stressful environments.  相似文献   

2.
To investigate the potential response to natural selection of reaction norms for age and size at maturity, fresh body weight at eclosion was mass selected under rich and poor larval food conditions in Drosophila melanogaster. The sensitivity of dry weight at eclosion to the difference between rich and poor larval food was selected using differences in sensitivities among families. For both experiments, the correlated response to selection of age at eclosion was examined. The flies were derived from wild populations and had been mass cultured in the lab for more than six months before the experiments started. These flies responded to selection on body weight upwards and downwards on both rich and poor larval food. Selection on increased or decreased sensitivity of body weight was also successful in at least one direction. Sensitivity was reduced by selection upwards in a poor environment and downwards in a rich environment.  相似文献   

3.
Soto I  Cortese M  Carreira V  Folguera G  Hasson E 《Genetica》2006,127(1-3):199-206
We assessed the indirect response of longevity in lines selected for wing length (WL) and developmental time (DT). Longevity in selection lines was compared to laboratory control lines and the offspring of recently collected females. Wild flies (W lines), flies from lines selected for fast development (F lines), and for fast development and large wing length (L lines) outlived control laboratory lines (C lines) and lines selected for fast development and short wing (S lines). The decline in longevity in S lines is in line with the idea that body size and longevity are correlated and may be the result of the fixation of alleles at loci affecting pleiotropically the two traits under selection and longevity. In addition, inbreeding and artificial selection affected the correlation between wing length and longevity that occurs in natural populations of Drosophila buzzatii, suggesting that correlations between traits are not a perdurable feature in a population.  相似文献   

4.
The Chitty hypothesis proposes that the demographic changes occurring in microtine cycles are mediated by natural selection operating on the genetic composition of the population. Implicit in this hypothesis is the assumption that a suite of life-history traits is simultaneously undergoing selection and that these traits are strongly heritable. We tested this in two ways: first, by determining whether the year-to-year differences in phenotypes in fluctuating meadow vole populations in the field are maintained in samples of young animals raised in the laboratory, and second, whether the variation seen in the field has a heritable basis as determined by half-sib analysis. Parents were obtained in the springs of successive years from a fluctuating meadow vole population. These animals were bred in small field enclosures, and their progeny were raised in the laboratory. Animals raised in the laboratory differed significantly from those in the natural field population. In the field, young from the year when population size was increasing grew more rapidly than those from the peak year; in the laboratory, the opposite occurred. The ages at sexual maturity showed similar differences. Heritability analysis was performed on body weight, growth rate, and age and weight at sexual maturity. Virtually all these traits showed significant dam effects, but small or nonexistant sire effects. Thus, most of the variation was nongenetic in origin; maternal and other environmental effects were of overriding importance. We conclude that the heritabilities of these traits in nature are usually lower than necessary for natural selection to operate in the time frames characteristic of microtine cycles.  相似文献   

5.
Sexual size dimorphism (SSD) is a common phenomenon caused by a variety of environmental and genetic mechanisms in animals. In the current study, we investigate the demography of a population of eastern fence lizards ( Sceloporus undulatus ) to compare age structure and survivorship between the sexes, and we examine growth rates of juveniles under both natural and controlled laboratory conditions to elucidate causes of SSD in this species. Furthermore, using our laboratory growth data, we examine the heritability of juvenile growth rates. Our results show that SSD develops in the field before the end of the first year of age (before sexual maturity) because juvenile females grow more rapidly than juvenile males. In the laboratory environment, however, we observed no sexual difference in growth rates for lizards up to the size of maturity in the field. Thus, sexual differences in growth rate and subsequent development of SSD in this population are highly plastic and subject to strong proximal control. We found high levels of additive genetic variance for juvenile growth, indicating a strong potential for selection to operate on juvenile growth rates. Our results indicate that selection on juvenile growth rate could account for differences in growth among populations but would not necessarily contribute to SSD within our population due to the high plasticity in growth rate.  相似文献   

6.
In the cactophilic species Drosphila buzzatii, it is feasible to infer the action of natural selection by simultaneously sampling different life history stages in the field. During four years of research, samples of mating and non-mating adults and pupae were taken from a natural population. The main adult fitness components, i.e., mating success, longevity, and fecundity, were recorded in relation to body size, as measured by thorax length. The age of flies was estimated by observing the developmental stage of the reproductive system. Our data showed that larger flies can outlive and outmate small flies, and that mating success is related to age. An estimate of the fitness function showed a linear increase of mating success with increasing thorax length. There was no assortative mating for this trait. We advance the hypothesis that mating success is related to the rate of encounter and courtship time through general activity, which in turn may be related to body size. A positive phenotypic correlation between thorax length and ovariole number, which is related to fecundity, was found in females emerged from wild pupae. Neither the phenotypic nor the genetic (additive) correlations between these two traits were statistically different from zero in laboratory reared females. The genetic consequences of the observed phenotypic selection on body size are discussed.  相似文献   

7.
Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life‐history traits (the age‐ and size‐at‐maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life‐history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age‐to‐maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (~ 1.4 vs. 4% change in age‐at‐maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue.  相似文献   

8.
Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild‐caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14–18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age‐specific CHC profiles where Baja adults showed far less age‐specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed.  相似文献   

9.
The evolution of alternative mating strategies in variable environments   总被引:6,自引:0,他引:6  
Summary We assessed the influence of phenotypic plasticity in age at maturity on the maintenance of alternative mating strategies in male Atlantic salmon,Salmo salar. We calculated the fitness,r, associated with the parr and the anadromous strategies, using age-specific survival data from the field and strategy-specific fertilization data from the laboratory. The fitness of each strategy depended largely on mate competition (numbers of parr per female, i.e. parr frequency) and on age at maturity. Fitness declined with increasing numbers of parr per female with equilibrium frequencies (at which the fitnesses of each strategy are equal) being within the range observed in the wild. Equilibrium parr frequencies declined with decreasing growth rate and increasing age at maturity. Within populations, the existence of multiple age-specific sets of fitness functions suggests that the fitnesses of alternative strategies are best represented as multidimensional surfaces. The points of intersection of these surfaces, whose boundaries encompass natural variation in age at maturity and mate competition, define an evolutionarily stable continuum (ESC) of strategy frequencies along which the fitnesses associated with each strategy are equal. We propose a simple model that incorporates polygenic thresholds of a largely environmentally-controlled trait (age at maturity) to provide a mechanism by which an ESC can be maintained within a population. An indirect test provides support for the prediction that growth-rate thresholds for parr maturation exist and are maintained by stabilizing selection. Evolutionarily stable continua, maintained by negative frequency-dependent selection on threshold traits, provide a theoretical basis for understanding how alternative life histories can evolve in variable environments.  相似文献   

10.
Three varieties of wheat. Thatcher, Falcon and Sunset. were grown under 20. 12 or 8 hour days until the initiation of spikelet primordia on the shoot apex began, and then in natural light until maturity. Phosphorus (100 mg/l P) was applied at 7, 33 or 54 days after sowing, other plants were left without phosphorus. The response of the plants to phosphorus in terms of final leaf number, grain production and number of fertile spikelets was related to time of initiation. When the time of initiation was 52 or more days after sowing there were some responses in grain yield to phosphorus, but they were independent of time of application; for initiation times of 32 days or less the earlier applications of phosphorus tended to give a greater response.  相似文献   

11.
Offspring-parent regressions provided initial estimates of heritabilities and genetic correlations among wing length, body length, pronotum width, head-capsule width, development time, age at first reproduction, and fecundity in an Iowa population of the large milkweed bug, Oncopeltus fasciatus. Replicated, bidirectional selection for wing length was imposed for nine generations. The direct response to selection revealed the existence of substantial additive genetic variance for wing length in this population. Traits were assayed for correlated responses to selection after seven generations. Body length, pronotum width, head capsule width, and fecundity showed consistent, positive correlated responses. Development time showed a negative correlated response. Age at first reproduction showed no consistent correlated response to selection on wing length. These pleiotropic effects among wing length and fecundity, development time, and body size characters provide the potential for these traits to evolve together in O. fasciatus, independently of age at first reproduction.  相似文献   

12.
The correlation between body size and longevity was tested in an Argentinian natural population of Drosophila buzzatii. Mean thorax length of flies newly emerging from rotting cladodes of Opuntia vulgaris was significantly smaller than that of two samples of flies caught at baits. The present results which might be interpreted as directional selection for longevity favoring larger flies are in agreement with previous results achieved in a Spanish natural population of D. buzzatii. Flies emerging from different substrates showed significant differences in thorax length, suggesting that an important fraction of phenotypic variance can be attributed to environmental variability. However, laboratory and field work in different populations of D. buzzatii showed a significant genetic component for thorax length variation.  相似文献   

13.
The theory of evolution predicts that the rate of adaptation of a population is a function of the amount of genetic variation present in the population. This has been experimentally demonstrated in Drosophila populations in which genetic variability was increased either by mass hybridization of two gene pools, or by X-irradiation.—Mutator genes increase the spontaneous mutation rates of their carriers. We have now studied the effects of a third-chromosome mutator gene, mt, on the rate of adaptation of laboratory populations. Initially, experimental and control populations had similar genetic constitutions except for the presence or absence of the mt gene. The populations were maintained for 20–25 generations by "serial transfer" under conditions of very intense selection.—The number of flies produced per unit time remained constant throughout the experiment in the experimental as well as in the control populations. However, in the mutator-carrying populations the average longevity of the flies (and consequently the average population size) gradually decreased. Under the experimental conditions natural selection is unable to counteract completely the increased input of deleterious mutations due to the mt gene.  相似文献   

14.
A. C. James  RBR. Azevedo    L. Partridge 《Genetics》1997,146(3):881-890
Field-collected Drosophila melanogaster from 19 populations in Eastern Australia were measured for body size traits, and the measurements were compared with similar ones on flies from the same populations reared under standard laboratory conditions. Wild caught flies were smaller, and latitudinal trends in size were greater. Reduced size was caused by fewer cells in the wing, and the steeper cline by greater variation in cell area. The reduction in size in field-collected flies may therefore have been caused by reduced nutrition, and the steeper cline may have been caused by an environmental response to latitudinal variation in temperature. No evidence was found for evolution of size traits in response to laboratory culture. The magnitude of phenotypic plasticity in response to temperature of development time, body size, cell size and cell number was examined for six of the populations, to test for latitudinal variation in plasticity. All characters were plastic in response to temperature. Total development time showed no significant latitudinal variation in plasticity, although larval development time showed a marginally significant effect, with most latitudinal variation at intermediate rearing temperatures. Neither thorax length nor wing size and its cellular components showed significant latitudinal variation in plasticity.  相似文献   

15.
Abstract. The mate choice, courtship and oviposition behaviour of laboratory-reared and field-collected Anastrepha fraterculus (Wied.) were compared. In laboratory cultures in Southampton the duration of male calling activity in small leks increased gradually from 1-2h at 5 days old to up to 7 h at 10 days. This finding correlates with previous reports on the time at which male salivary glands, which are believed to produce sex pheromone, are fully developed. Wild flies which emerged from infested fruits in Brazil began to oviposit on the day they mated, whereas in laboratory flies oviposition began 1 day following the first mating. Both types of fly usually defended their position on a particular fruit throughout the day, and re-mated with either virgin or mated males. There was no significant difference in mating duration. Females did not copulate before the mean age (±SE) of 16.8±0.9 days. For both types of flies mating initiation occurred in the first 2h of photophase, with virgin females choosing mainly mated males. The average number of matings in the laboratory was three for females and four for males, and the interval between matings in females was significantly increased after the second mating. It is suggested that the tendency of virgin females to mate with mated males will lead to increased fitness, as males are on average 48 days old at their second mating. The potential life span of around 200 days for both sexes would allow adults to bridge the gap between seasonally available fruits in warm-temperate and sub-tropical South America.  相似文献   

16.
We have previously reported a correlation between the life-history patterns of guppies and the types of predators with which they coexist. Guppies from localities with an abundance of large predators (high predation localities) mature at an earlier age and devote more resources to reproduction than those found in localities with only a single, small species of predator (low predation localities). We also found that when guppies were introduced from a high to low predation locality, the guppy life history evolved to resemble what was normally found in this low predation locality. The presumed mechanism of natural selection is differences among localities in age/size-specific mortality (the age/size-specific mortality hypothesis); in high predation localities we assumed that guppies experienced high adult mortality rates while in the low predation localities we assumed that guppies experienced high juvenile mortality rates. These assumptions were based on stomach content analyses of wild-caught predators and on laboratory experiments. Here, we evaluate these assumptions by directly estimating the mortality rates of guppies in natural populations. We found that guppies from high predation localities experience significantly higher mortality rates than their counterparts from low predation localities, but that these higher mortality rates are uniformly distributed across all size classes, rather than being concentrated in the larger size classes. This result appears to contradict the predictions of the age/size-specific predation hypothesis. However, we argue, using additional data on growth rates and the probabilities of survival to maturity in each type of locality, that the age-specific mortality hypothesis remains plausible. This is because the probability of survival to first reproduction is very similar in each type of locality, but the guppies from high predation localities have a much lower probability of survival per unit time after maturity. We also argue for the plausibility of two other mechanisms of natural selection. These results thus reveal mortality patterns that provide a potential cause of natural selection, but expand, rather than narrow, the number of possible mechanisms responsible for life-history evolution in guppies.  相似文献   

17.
T. Prout  JSF. Barker 《Genetics》1989,123(4):803-813
The heritability of thorax length in the cactophilic Drosophila buzzatii was determined for flies from each of 10 rotting cactus cladodes. For each rot, emerging flies were used as parents of progeny reared in the laboratory. The methods used were full sib analysis with the parents mated assortatively and also offspring-parent regression. From this, heritabilities were measured for the laboratory environment and for the natural environment of the rotting cladode. For the laboratory environment, h2 = 0.3770 +/- 0.0203 and for the natural environment h2 = 0.0936 +/- 0.0087 within rots and h2 = 0.0595 +/- 0.0123 for a population drawn randomly from different rots. Because of the possibility of genotype-environment interaction between the laboratory and rot environments, the methods of B. Riska, T. Prout and M. Turelli were used to show it is possible that there is no such interaction, but if there is, the above natural heritabilities are approximate lower bounds. These results are related to the general problem of determining heritabilities in nature where it is impractical to measure both parents and progeny in nature. Determining heritability not only in nature but in relation to subdivision into ephemeral patches (cladodes in this case) has an important bearing on natural selection response and to general theories of stabilizing selection proposed to explain the existence of genetic variation. Attempts were made to detect selection by using the size of emerging adults as an indicator of various levels of larval stress. No selection was detected, but the power to do so was very weak. Differences between progeny means from different rots indicated some genetic differences between rots which can be adequately explained by small numbers of founders. This suggests a random fine scale subdivision amounting to FST = 0.1483 +/- 0.0462.  相似文献   

18.
Previous work has shown thorax length to be under directional selection in the Drosophila buzzatii population of Carboneras. In order to predict the genetic consequences of natural selection, genetic variation for this trait was investigated in two ways. First, narrow sense heritability was estimated in the laboratory F2 generation of a sample of wild flies by means of the offspring-parent regression. A relatively high value, 0.59, was obtained. Because the phenotypic variance of wild flies was 7-9 times that of the flies raised in the laboratory, "natural" heritability may be estimated as one-seventh to one-ninth that value. Second, the contribution of the second and fourth chromosomes, which are polymorphic for paracentric inversions, to the genetic variance of thorax length was estimated in the field and in the laboratory. This was done with the assistance of a simple genetic model which shows that the variance among chromosome arrangements and the variance among karyotypes provide minimum estimates of the chromosome's contribution to the additive and genetic variances of the trait, respectively. In males raised under optimal conditions in the laboratory, the variance among second-chromosome karyotypes accounted for 11.43% of the total phenotypic variance and most of this variance was additive; by contrast, the contribution of the fourth chromosome was nonsignificant. The variance among second-chromosome karyotypes accounted for 1.56-1.78% of the total phenotypic variance in wild males and was nonsignificant in wild females. The variance among fourth chromosome karyotypes accounted for 0.14-3.48% of the total phenotypic variance in wild flies. At both chromosomes, the proportion of additive variance was higher in mating flies than in nonmating flies.  相似文献   

19.
Anolis lizards in the Greater Antilles are thought to have diversified through natural selection on body size and shape, presumably due to interspecific competition and variation in locomotor performance. Here we measure natural selection on body size over three years and across seven replicate populations of the brown anole, A. sagrei. We experimentally manipulated an important component of the environment (population density) on several small islands to test the role of density in driving natural selection. Results indicate that the strength of natural selection was proportional to population density (r2 = 0.81), and favored larger body sizes at higher density, presumably owing to the enhanced competitive ability afforded by large size. Changes in the distribution of body size by selective releases of lizards to islands show that this effect did not arise by pure density dependence, since smaller individuals were disproportionately selected against at higher densities. We measured significant broad sense heritability for body size in the laboratory (h2 = 0.55) indicating that selection in the wild could have an evolutionary response. Our results suggest an important effect of population density on natural selection in Anolis lizards.  相似文献   

20.
Studies of genetic correlations between traits that ostensibly channel the path of evolution away from the direction of natural selection require information on key aspects such as ancestral phenotypes, the duration of adaptive evolution, the direction of natural selection, and genetic covariances. In this study we provide such information in a frog population system. We studied adaptation in life history traits to pool drying in frog populations on islands of known age, which have been colonized from a mainland population. The island populations show strong local adaptation in development time and size. We found that the first eigenvector of the variance–covariance matrix (g max) had changed between ancestral mainland populations and newly established island populations. Interestingly, there was no divergence in g max among island populations that differed in their local adaptation in development time and size. Thus, a major change in the genetic covariance of life-history traits occurred in the colonization of the island system, but subsequent local adaptation in development time took place despite the constraints imposed by the genetic covariance structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号