首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Novel DNA-binding properties of the RNA-binding protein TIAR   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
Quaking viable (Qk(v)) mice have developmental defects that result in their characteristic tremor. The quaking (Qk) locus expresses alternatively spliced RNA-binding proteins belonging to the STAR family. To characterize the RNA binding specificity of the QKI proteins, we selected for RNA species that bound QKI from random pools of RNAs and defined the QKI response element (QRE) as a bipartite consensus sequence NACUAAY-N(1-20)-UAAY. A bioinformatic analysis using the QRE identified the three known RNA targets of QKI and 1,430 new putative mRNA targets, of which 23 were validated in vivo. A large proportion of the mRNAs are implicated in development and cell differentiation, as predicted from the phenotype of the Qk(v) mice. In addition, 24% are implicated in cell growth and/or maintenance, suggesting a role for QKI in cancer.  相似文献   

6.
Cellular messenger RNAs (mRNAs) are associated to proteins in the form of ribonucleoprotein particles. The double-stranded RNA-binding (DRB) proteins play important roles in mRNA synthesis, modification, activity and decay. Staufen is a DRB protein involved in the localized translation of specific mRNAs during Drosophila early development. The human Staufen1 (hStau1) forms RNA granules that contain translation regulation proteins as well as cytoskeleton and motor proteins to allow the movement of the granule on microtubules, but the mechanisms of hStau1-RNA recognition are still unclear. Here we used a combination of affinity chromatography, RNAse-protection, deep-sequencing and bioinformatic analyses to identify mRNAs differentially associated to hStau1 or a mutant protein unable to bind RNA and, in this way, defined a collection of mRNAs specifically associated to wt hStau1. A common sequence signature consisting of two opposite-polarity Alu motifs was present in the hStau1-associated mRNAs and was shown to be sufficient for binding to hStau1 and hStau1-dependent stimulation of protein expression. Our results unravel how hStau1 identifies a wide spectrum of cellular target mRNAs to control their localization, expression and fate.  相似文献   

7.
The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3′ extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3′ end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.  相似文献   

8.
9.
10.
11.
12.
13.
14.
We have solved the crystal structure of the heat shock protein Hsp15, a newly isolated and very highly inducible heat shock protein that binds the ribosome. Comparison of its structure with those of two RNA-binding proteins, ribosomal protein S4 and threonyl-tRNA synthetase, reveals a novel RNA-binding motif. This newly recognized motif is remarkably common, present in at least eight different protein families that bind RNA. The motif's surface is populated by conserved, charged residues that define a likely RNA-binding site. An intriguing pattern emerges: stress proteins, ribosomal proteins and tRNA synthetases repeatedly share a conserved motif. This may imply a hitherto unrecognized functional similarity between these three protein classes.  相似文献   

15.
16.
Precise identification of target sites of RNA-binding proteins (RBP) is important to understand their biochemical and cellular functions. A large amount of experimental data is generated by in vivo and in vitro approaches. The binding preferences determined from these platforms share similar patterns but there are discernable differences between these datasets. Computational methods trained on one dataset do not always work well on another dataset. To address this problem which resembles the classic “domain shift” in deep learning, we adopted the adversarial domain adaptation (ADDA) technique and developed a framework (RBP-ADDA) that can extract RBP binding preferences from an integration of in vivo and vitro datasets. Compared with conventional methods, ADDA has the advantage of working with two input datasets, as it trains the initial neural network for each dataset individually, projects the two datasets onto a feature space, and uses an adversarial framework to derive an optimal network that achieves an optimal discriminative predictive power. In the first step, for each RBP, we include only the in vitro data to pre-train a source network and a task predictor. Next, for the same RBP, we initiate the target network by using the source network and use adversarial domain adaptation to update the target network using both in vitro and in vivo data. These two steps help leverage the in vitro data to improve the prediction on in vivo data, which is typically challenging with a lower signal-to-noise ratio. Finally, to further take the advantage of the fused source and target data, we fine-tune the task predictor using both data. We showed that RBP-ADDA achieved better performance in modeling in vivo RBP binding data than other existing methods as judged by Pearson correlations. It also improved predictive performance on in vitro datasets. We further applied augmentation operations on RBPs with less in vivo data to expand the input data and showed that it can improve prediction performances. Lastly, we explored the predictive interpretability of RBP-ADDA, where we quantified the contribution of the input features by Integrated Gradients and identified nucleotide positions that are important for RBP recognition.  相似文献   

17.
18.
During Drosophila embryogenesis, Smaug protein represses translation of Nanos through an interaction with a specific element in its 3(')UTR. The repression occurs in the bulk cytoplasm of the embryo; Nanos is, however, successfully translated in the specialized cytoplasm of the posterior pole. This generates a gradient of Nanos emanating from the posterior pole that is essential for organizing proper abdominal segmentation. To understand the structural basis of RNA binding and translational control, we have crystallized a domain of Drosophila Smaug that binds RNA. The crystals belong to the space group R3 with unit cell dimensions of a=b=129.3A, c=33.1A, alpha=beta=90 degrees, gamma=120 degrees and diffract to 1.80A with synchrotron radiation. Initial characterization of this domain suggests that it encodes a novel RNA-binding motif.  相似文献   

19.
RNA-binding protein Dnd1 inhibits microRNA access to target mRNA   总被引:12,自引:0,他引:12  
MicroRNAs (miRNAs) are inhibitors of gene expression capable of controlling processes in normal development and cancer. In mammals, miRNAs use a seed sequence of 6-8 nucleotides (nt) to associate with 3' untranslated regions (3'UTRs) of mRNAs and inhibit their expression. Intriguingly, occasionally not only the miRNA-targeting site but also sequences in its vicinity are highly conserved throughout evolution. We therefore hypothesized that conserved regions in mRNAs may serve as docking platforms for modulators of miRNA activity. Here we demonstrate that the expression of dead end 1 (Dnd1), an evolutionary conserved RNA-binding protein (RBP), counteracts the function of several miRNAs in human cells and in primordial germ cells of zebrafish by binding mRNAs and prohibiting miRNAs from associating with their target sites. These effects of Dnd1 are mediated through uridine-rich regions present in the miRNA-targeted mRNAs. Thus, our data unravel a novel role of Dnd1 in protecting certain mRNAs from miRNA-mediated repression.  相似文献   

20.
Regulation of RNA metabolism plays a major role in controlling gene expression during developmental processes. The Drosophila RNA-binding protein Held out wing (HOW), regulates an array of developmental processes in embryonic and adult growth. We have characterized the primary sequence and secondary structural requirements for the HOW response element (HRE), and show that this site is necessary and sufficient for HOW binding. Based on this analysis, we have identified the Drosophila TGFbeta homolog, dpp, as a novel direct target for HOW negative regulation in the wing imaginal disc. The binding of the repressor isoform HOW(L) to the dpp 3' untranslated region (UTR) leads to a reduction of GFP-dpp3'UTR reporter levels in S-2 cells, in an HRE site-dependent manner. Moreover, co-expression of HOW(L) in the wing imaginal disc with a dpp-GFP fusion construct led to a reduction in DPP-GFP levels in a dpp-3'UTR-dependent manner. Conversely, a reduction of the endogenous levels of HOW by targeted expression of HOW-specific double-stranded RNA led to a corresponding elevation in dpp mRNA level in the wing imaginal disc. Thus, by characterizing the RNA sequences that bind HOW, we demonstrate a novel aspect of regulation, at the mRNA level, of Drosophila DPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号