首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen-fixing root nodules develop on legumes as a result of an interaction between host plants and soil bacteria collectively referred to as rhizobia. The organogenic process resulting in nodule development is triggered by the bacterial microsymbiont, but genetically controlled by the host plant genome. Using T-DNA insertion as a tool to identify novel plant genes that regulate nodule ontogeny, we have identified two putatively tagged symbiotic loci, Ljsym8 and Ljsym13, in the diploid legume Lotus japonicus. The sym8 mutants are arrested during infection by the bacteria early in the developmental process. The sym13 mutants are arrested in the final stages of infection, and ineffective nodules are formed. These two plant mutant lines were identified in progeny from 1112 primary transformants obtained after Agrobacterium tumefaciens T-DNA-mediated transformation of L. japonicus and subsequent screening for defects in the symbiosis with Mesorhizobium loti. Additional nontagged mutants arrested at different developmental stages were also identified and genetic complementation tests assigned all the mutations to 16 monogenic symbiotic loci segregating recessive mutant alleles. In the screen reported here independent symbiotic loci thus appeared with a frequency of ∼1.5%, suggesting that a relatively large set of genes is required for the symbiotic interaction. Received: 12 May 1998 / Accepted: 24 June 1998  相似文献   

2.
Summary We report here the isolation of temperature-sensitive mutants of the yeast Saccharomyces cerevisiae which exhibit cdc phenotypes. The recessive mutations defined four complementation groups, named ore1, ore2, ore3 and ore4. At the non-permissive temperature, strains bearing these mutations arrested in the G1 phase of the cell cycle. The wild-type allele of the gene altered in ore2 mutants was cloned. The nucleotide sequence of a fragment which can complement the mutation showed the presence of an open reading frame capable of encoding a protein with 286 amino acid residues. The deduced amino acid sequence showed 25% identity with that of the Escherichia coli 1-pyrroline-5-carboxylate reductase, an enzyme of the pathway for the biosynthesis of proline. The ore2 mutants, correspondingly, were found to be capable of growing at the non-permissive temperature on a synthetic medium supplemented with proline. In addition, the chromosomal location of the gene and its restriction map were compatible with those previously reported for the PRO3 gene which encodes the S. cerevisiae 1-pyrroline-5-carboxylate reductase.  相似文献   

3.
The Dar (deformed anal region) phenotype, characterized by a distinctive swollen tail, was first detected in a variant strain of Caenorhabditis elegans which appeared spontaneously in 1986 during routine genetic crosses [1] and [2]. Dar isolates were initially analysed as morphological mutants, but we report here that two independent isolates carry an unusual bacterial infection different from those previously described [3], which is the cause of the Dar phenotype. The infectious agent is a new species of coryneform bacterium, named Microbacterium nematophilum n. sp., which fortuitously contaminated cultures of C. elegans. The bacteria adhere to the rectal and post-anal cuticle of susceptible nematodes, and induce substantial local swelling of the underlying hypodermal tissue. The swelling leads to constipation and slowed growth in the infected worms, but the infection is otherwise non-lethal. Certain mutants of C. elegans with altered surface antigenicity are resistant to infection. The induced deformation appears to be part of a survival strategy for the bacteria, as C. elegans are potentially their predators.  相似文献   

4.
Summary Heme-deficient mutants of Rhizobium and Bradyrhizobium have been found to exhibit diverse phenotypes with respect to symbiotic interactions with plant hosts. We observed that R. meliloti hemA mutants elicit nodules that do not contain intracellular bacteria; the nodules contain either no infection threads (empty nodule phenotype) or aberrant infection threads that failed to release bacteria (Bar phenotype). These mutant nodules expressed nodulin genes associated with nodules arrested at an early stage of development, including ENOD2, Nms-30, and four previously undescribed nodulin genes. These nodules also failed to express any of six late nodulin genes tested by hybridization, including leghemoglobin, and twelve tested by in vitro translation product analysis which are not yet correlated with specific cloned genes. We observed that R. meliloti leucine and adenosine auxotrophs induced invaded Fix nodules that expressed late nodulin genes, suggesting that it is not auxotrophy per se that causes the hemA mutants to elicit Bar or empty nodules. Because R. meliloti hemA mutants elicit nodules that do not contain intracellular bacteria, it is not possible to decide whether or not the Fix phenotype of these nodules is a direct consequence of the failure of R. meliloti to supply the heme moiety of hololeghemoglobin. Our results demonstrate the importance of establishing the stage in development at which a mutant nodule is arrested before conclusions are drawn about the role of small metabolite exchange in the symbiosis.  相似文献   

5.
Summary Phage mutants were isolated with amber mutations in genes necessary for establishment of lysogeny. These mutants form turbid plaques on su + strain 527R1 and clear plaques of different types on LT2. According to complementation tests, fourteen mutants fall in the c 2 gene, four in the c 3 gene but no amber mutants were found belonging to the c 1 gene. Pulse labelling experiments to follow DNA synthesis after phage infection were done with the mutants classified by complementation tests. Furthermore the labelling experiments demonstrated that the nonleaky c 3 amber mutants displayed the same DNA synthesis pattern as c 1 missense mutants. Since these c 3 amber mutants complement missense c 1 mutants it is concluded that the c 3 and c 1 genes must act together for the first transient repression of DNA synthesis, i.e., seven minutes after infection. It is suggested that clear plaque forming c 1 amber mutants cannot be isolated because of polarity leading to defectivity of lysogenic as well as of lytic functions.The majority of the experiments presented are a part of the dissertation of H. D. Dopatka at the University of Göttingen.  相似文献   

6.
Two novel non-allelic mutants that were unable to fix nitrogen (Fix) were obtained after EMS (ethyl methyl sulfonate) mutagenesis of pea (Pisum sativum L.). Both mutants, SGEFix–1 and SGEFix–2, form two types of nodules: SGEFix–1 forms numerous white and some pink nodules, while mutant SGEFix–2 forms white nodules with a dark pit at the distal end and also some pinkish nodules. Both mutations are monogenic and recessive. In both lines the manifestation of the mutant phenotype is associated with the root genotype. White nodules of SGEFix–1 are characterised by hypertrophied infection threads and infection droplets, mass endocytosis of bacteria, abnormal morphological differentiation of bacteroids, and premature degradation of nodule symbiotic structures. The structure of the pink nodules of SGEFix–1 does not differ from that of the parental line, SGE. White nodules of SGEFix–2 are characterised by “locked” infection threads surrounded with abnormally thick plant cell walls. In these nodules there is no endocytosis of bacteria into host-cell cytoplasm. The pinkish nodules of SGEFix–2 are characterised by virtually undifferentiated bacteroids and premature degradation of nodule tissues. Thus, the novel pea symbiotic genes, sym40 and sym33, identified after complementation analysis in SGEFix–1 and SGEFix–2 lines, respectively, control early nodule developmental stages connected with infection thread formation and function. Received: 12 June 1998 / Accepted: 25 June 1998  相似文献   

7.
Summary A 14 kb DNA fragment from the Sym plasmid of the Rhizobium trifolii strain ANU843, known to carry common nodulation nod and host specific nodulation hsn genes, was extensively mutagenised with transposon Tn5. A correlation between the site of Tn5 insertion and the induced nodulation defect led to the identification of three specific regions (designated I, II, III) which affected nodulation ability. Twenty-three Tn5 insertions into region I (ca. 3.5 kb) affected normal root hair curling ability and abolished infection thread formation. The resulting mutants were unable to nodulate all tested plant species. Tn5 insertions in regions II and III resulted in mutants which showed an exaggerated root hair curling (Hac++) response on clover plants. Ten region II mutants which occurred over a 1.1 kb area showed a greatly reduced nodulation ability on clovers and produced aborted, truncated infection threads. Tn5 insertions into region III (ca. 1.5 kb) altered the outcome of crucial early plant recognition and infection steps by R. trifolii. Seven region III mutants displayed host-range properties which differed from the original parent strain. Region III mutants were able to induce marked root hair distortions, infection threads, and nodules on Pisum sativum including the recalcitrant Afghanistan variety. In addition region III mutants showed a poor nodulation ability on Trifolium repens even though the ability to induce infection threads was retained on this host. The altered host-range properties of region III mutants could only be revealed by mutation and the mutant phenotype was shown to be recessive.  相似文献   

8.
Summary Transposon insertion mutagenesis of the Pseudomonas aeruginosa PAO chromosome with Tn1 and Tn501 was carried out using a mutant plasmid of R68::Tn501 temperature-sensitive for replication and maintenance. This method consists of three steps. Firstly, the temperature-independent, drug-resistant clones were selected from the strain carrying this plasmid. In the temperature-indepent clones, the plasmid was integrated into the chromosome by Tn1- or Tn501-mediated cointegrate formation. Secondly, such clones were cultivated at a permissive temperature to provoke the excision of the integrated plasmid from the chromosome. Excision occurred by the reciprocal recombination between the two copies of Tn1 or Tn501 flanking the integrated plasmid, leaving one Tn1 or Tn501 insertion on the chromosome. Thirdly, the excised plasmid was cured by cultivating these isolates at a non-permissive temperature without selection for the drug resistance. Using this method, we isolated 1 Tn1-induced and 43 Tn501-induced auxotropic mutations in this organism. Genetic mapping allowed us to identify two new genes, pur-8001 and met-8003. The Tn501-induced auxotrophic mutations were distributed non-randomly among auxotrophic genes, and the reversion of the mutations by precise excision of the Tn501 insertion occurred very rarely.  相似文献   

9.
A new IS element (ISL3) was discovered inLactobacillus delbrueckii subsp.bulgaricus during the characterization of the linkage relationships between the two genes important for milk fermentation,-galactosidase (lacZ) and the cell-wall associated protease (prtP). ISL3 is a 1494 by element, flanked by 38 by imperfect inverted repeats, and generates an 8 by target duplication upon insertion. It contains one open reading frame, encoding a potential polypeptide of 434 amino acids, which shows significant homology (34% identity) to the transposase of theLeuconostoc mesenteroides element IS1165. Molecular analysis of spontaneouslacZ mutants revealed some strains that had sustained deletions of 7 to 30 kb in size, centered on and eliminating the copy of ISL3 next tolacZ. Other deletion endpoints were identified as located immediately adjacent to ISL3. Furthermore, genetic translocations that had occurred via transposition of ISL3 were observed fortuitously in cultures screened for deletion mutants. ISL3 can be found in one to several copies in various strains ofL. delbrueckii. However, it was not present in other dairy lactic acid bacteria tested.  相似文献   

10.
11.
Summary Genetic studies have shown the presence of more than 20 fla genes indispensable for the formation of flagella in Salmonella typhimurium and Escherichia coli. Functional homology of the fla genes in these two bacterial species was examined through intergeneric complementation tests by bacteriophage Pl-mediated transduction from E. coli donors to S. typhimurium recipients. It was found that most of the fla gene products in these two bacterial species were interchangeable and the following correspondence was established (S. typhimurium genes vs. E. coli genes): flaFIV to flaV; flaFV to flaK; flaFVII to flaL; flaFIX to flaM; flaC to flaH; flaM to flaG; flaE to flaI; flaAI to flaN; flaAII·1 to flaB; flaAIII to flaC; flaS to flaO; flaR to flaE; flaQ to flaA; and flaB to flaR. These results suggest that the chromosomal alignment of the functionally homologous genes is very similar in these two bacterial species. Furthermore, five additional fla genes were inferred to exist in E. coli in addition to the fla genes already identified. They were termed flaU, flaX, flaY, flaZ, and flbB (flb is equivalent to fla), which corresponded to flaFI, flaFVI, flaFVIII, flaFX, and flaK of Salmonella in this order. The flaK mutants of E. coli showed no complementation with any of the flaFV, flaFVI, flaFVII, flaFVIII, or flaFIX mutants of Salmonella.  相似文献   

12.
 Host factors that are important for infection of Xanthomonas campestris pv. citri by the filamentous bacteriophage cf were investigated by transposon mutagenesis with Tn5tac1. A mutant, XT501, that was resistant to cf infection was recovered, showing that the gene inactivated by the transposon is required for infection by the phage but not for cf replication or assembly. A 1.7-kb SacI-ApaI DNA fragment from XT501 containing the bacterial DNA flanking one end of the transposon was cloned and shown to be required for cf infection. Nucleotide sequence analysis of the 1.7-kb fragment reveals the presence of an ORF that encodes a protein of 146 amino acids. This protein shows 42% identity to the type 4 prepilin encoded by the pilA genes of other bacteria. The pilA gene of X. campestris pv. citri is thus essential for infection by the bacteriophage cf. Received: 30 November 1998 / Accepted: 21 April 1999  相似文献   

13.
Two regulatory pathways govern filamentation in the pathogenic fungus Candida albicans. Recent virulence studies of filamentation regulatory mutants argue that both yeast and filamentous forms have roles in infection. Filamentation control pathways seem closely related in C. albicans and in Saccharomyces cerevisiae, thus permitting speculation about C. albicans filamentation genes not yet discovered.  相似文献   

14.
目的 利用果蝇作为遗传工具从个体和分子层面研究果蝇的训练免疫效应,并为后续深入研究其分子机制提供依据。方法 首先构建无菌果蝇模型,在此基础上构建果蝇成虫及跨发育阶段训练免疫模型,用两种革兰氏阴性菌——胡萝卜软腐欧文氏菌(Erwinia carotovora carotovora 15)及铜绿假单胞菌(Pseudomonas aeruginosa)分别经口腔感染果蝇。在第一次感染完全消退后进行再次感染,然后通过比较果蝇在两个感染阶段的存活率和细菌量来衡量训练免疫的潜在效果。通过实时荧光定量PCR检测相应先天免疫相关基因的表达水平,研究革兰氏阴性菌对免疫缺陷(IMD)通路的诱导作用。结果 果蝇成虫及幼虫初次感染均可提高二次感染后的生存率、细菌清除效率及死亡时能承受的最高细菌负荷;二次感染的果蝇中,IMD通路中免疫反应基因的基础表达比未感染的高,这提供了获得感染抗性的分子基础;果蝇的免疫反应主要发生在中肠,二次免疫比初次免疫的效应更迅速且剧烈;二次免疫的果蝇中,肠道干细胞的数量显著多于初次感染。结论 果蝇肠道中强大的训练免疫可由同源或异源革兰氏阴性菌口腔感染引发,且免疫记忆可在整个发育阶段持...  相似文献   

15.
Summary Chloroplast gene mutations which confer antibiotic resistance on chloroplast ribosomes of the green alga Chlamydomonas reinhardtii have been tested for allelism and mapped by recombination analysis of progeny from biparental zygote clones. Thirty-one independently isolated streptomycin resistant mutants have chloroplast ribosomes which are resistant to this drug in an assay based on misreading of isoleucine in response to a poly U template, and comprise one nuclear and four chloroplast gene loci. Four mutants resistant to spectinomycin, and three mutants resistant to neamine and kanamycin, which have chloroplast ribosomes resistant to their respective antibiotics in poly U directed phenylalanine incorporation, appear to map in a single chloroplast gene locus. Representative alleles of this nr/spr locus, the four streptomycin resistance loci, and two chloroplast gene loci for erythromycin resistance, have been analyzed in a series of parallel crosses to establish the following map order for these seven genes in the chloroplast genome: er-u-la-er-u-37-nr-u-2-1/spr-u-1-H-4-sr-u-2-23-sr-u-2-60-sr-u-sm3-sr-u-sm2. These seven genes may constitute a ribosomal region within the chloroplast genome of Chlamydomonas comparable to the ribosomal gene clusters in bacteria.  相似文献   

16.
Summary The two-step protein secretion pathway in Pseudomonas aeruginosa is dependent on the xcp genes. We investigated whether a similar secretion mechanism is present in non-pathogenic Pseudomonas spp. and in other gram-negative bacteria. The plant growth stimulating Pseudomonas strains P. putida WCS358, P. fuorescens WCS374 and Pseudomonas 1310 appeared to secrete proteins into the extracellular medium. Southern hybridization experiments showed the presence of xcp genes in these strains and also in other gram-negative bacteria, including Xanthomonas campestris. Complementation experiments showed that the xcp gene cluster of P. aeruginosa restored protein secretion in an X. campestris secretion mutant. The secretion gene cluster of X. campestris however, restored secretion capacity in P. aeruginosa mutants only to a low degree. Two heterologous proteins were not secreted by P. fuorescens and P. aeruginosa. The results suggest the presence of a similar two-step protein secretion mechanism in different gram-negative bacteria, which however, is not always functional for heterologous proteins.  相似文献   

17.
Summary The genes encoding the two successive enzymes of the lysine biosynthetic pathway, dihydrodipicolinate synthase (dapA) and dihydrodipicolinate reductase (dapB), have been isolated from Corynebacterium glutamicum by heterologous complementation of Escherichia coli mutants. The two genes reside on a single 3.8-kb chromosomal fragment. They were subcloned as non overlapping fragments on an E. coli/C. glutamicum shuttle vector and introduced into C. glutamicum. This resulted in overexpression of both enzyme activities which was irrespective of the orientation of the inserts and comparable to that obtained with the large 3.8-kb fragment. Therefore, both genes are located in close proximity to each other on the C. glutamicum chromosome, but are apparently independently transcribed.  相似文献   

18.
We have previously reported the isolation of an Escherichia coli K12 mutant that is extremely sensitive to mutagenesis by low doses of ethylating agents. We now show by Southern analysis that the mutation involves a gross deletion covering at least the ogt and fnr genes and that no O6-alkylguanine-DNA-alkyltransferase activity is present in cell-free extracts of an ada::Tn10 derivative of these bacteria. Confirmation that sensitisation to ethylation-induced mutagenesis was attributable to ogt and not to any other loci covered by the deletion was obtained by constructing derivatives. Thus an ogt::kanr disruption mutation was introduced into the parental ogt + bacteria, and the ogt::kanr mutation was then eliminated by cotransduction of ogt + with the closely linked Tet r marker (zcj::Tn10). The (ogt-fnr) deletion or ogt::kanr disruption mutants were highly sensitive to ethyl methanesulphonate-induced mutagenesis, as measured by the induction of forward mutations to l-arabinose resistance (Ara1). Furthermore, the number of Arar mutants increased linearly with dose, unlike the case in ogt + bacteria, which had a threshold dose below which no mutants accumulated. Differences in mutability were even greater with propyl methanesulphonate. Overproduction of the ogt alkyltransferase from a multicopy plasmid reduced ethylmethanesulphonate-induced mutagenesis in the ogt mutant strains and also methylmethanesulphonate mutagenesis in ada bacteria. A sample of AB 1157 obtained from the E. coli K12 genetic stock centre also had a deletion covering the ogt and fnr genes. Since such deletions greatly influence the mutagenic responses to alkylating agents, a survey of the presence of the ogt gene in the E. coli K12 strain being used is advisable.  相似文献   

19.
Summary Mutants of Rhizobium leguminosarum which failed to fix nitrogen within nodules on peas were isolated following the insertion of the transposon Tn5 into pRL1JI, a Rhizobium plasmid known to carry the genes for nitrogenase. The sites of the Tn5 insertions were identified by restriction endonuclease mapping of cloned fragments of DNA from the mutant strains. One group of mutants was located within 4 kilobases of the structural genes for nitrogenase and another was located about 30 kilobases from this region. Two mutants from the first group, one of which appeared to be affected in a nitrogenase gene, induced nodules that contained bacterioids, but the number of plant cells containing bacteroids was less than in a normal nodule. Another group of mutants, which was located about 30 kilobases from the nitrogenase genes failed to form bacterioids. Electron microscopy of the nodules induced by these mutants indicated that there was a defect in their release from infection threads.  相似文献   

20.
Summary Rhizobium and Bradyrhizobium bacteria gain intercellular entry into roots of the non-legume Parasponia andersonii by stimulating localized sites of cell division which disrupt the epidermis. Infection threads are then initiated from intercellular colonies within the cortex. Infection via the information of infection threads within curled root hairs, which commonly occurs in legumes, was not observed in Parasponia. The conserved nodulation genes nodABC, necded for the curling of legume root hairs, were not essential for the initiation of infection, however, these genes were required for Parasponia prenodule development. In contrast, the nodD gene of Rhizobium strain NGR234 was essential for the initiation of infection. In addition, successful infection required not only nodD but a region of the NGR234 symbiotic plasmid which is not needed for the nodulation of legumes. Agrobacterium tumefaciens carrying this Parasponia specific region, as well as legume nod genes, was able to form nodules on Parasponia which reached an advanced stage of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号