首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study aimed to investigate the influence of the fungus Trichoderma asperellum on photosynthesis and nitrogen metabolism in maize seedlings of different genotypes, subjected to saline–alkaline stress. Saline–alkaline tolerant and sensitive varieties, Jiangyu 417 and Xianyu 335 (XY335), respectively, were grown in naturally saline–alkaline soil (pH 9.30) in 5-inch pots. Root and leaf samples were collected when seedlings had three heart-shaped leaves and the fourth leaf developing. Meadow soil (pH 8.23) was used as a positive control. Saline–alkaline stress remarkably increased NH4+ content and caused ammonia toxicity, weakened the ammonium assimilation process, and reduced photosynthesis in maize seedlings. Our results show that T. asperellum alleviated these effects to a certain degree, especially in XY335. The application of T. asperellum likely improved the content of photosynthetic pigments, enhanced the photochemical activity of the photosystem II reaction center, increased the activities of ATP enzymes in the chloroplasts, reduced the non-stomatal limitation of photosynthesis owing to saline–alkaline stress, and promoted photosynthesis to provide more raw materials and energy for nitrogen metabolism, thereby improving the activity of nitrogen metabolism and the capacity for material production in maize seedlings. By coordinating the synergistic effect of glutamate dehydrogenase, glutamine synthetase/glutamate synthase, and transamination, T. asperellum promoted the assimilation of excessively accumulated ammonia, maintained the balance of NH4+ and the enzymes related to its metabolism, and subsequently alleviated ammonia toxicity and negative changes in nitrogen metabolism resulting from saline–alkaline stress. Thus, the application of T. asperellum alleviated damage to chloroplasts and thylakoid membranes, and improved nitrogen metabolism, thereby promoting seedling growth. The concentration of 1?×?109 spores L?1 was found to be the most effective and economical treatment.  相似文献   

3.
Journal of Plant Growth Regulation - Chloride deicing salt stress usually coincides with the event of freeze–thaw, and the short-term adaptation of Dongmu-70 Secale cereale L. seedlings to...  相似文献   

4.
Clein  J S  McGuire  A D  Zhang  X  Kicklighter  D W  Melillo  J M  Wofsy  S C  Jarvis  P G  Massheder  J M 《Plant and Soil》2002,242(1):15-32
The role of carbon (C) and nitrogen (N) interactions on sequestration of atmospheric CO2 in black spruce ecosystems across North America was evaluated with the Terrestrial Ecosystem Model (TEM) by applying parameterizations of the model in which C–N dynamics were either coupled or uncoupled. First, the performance of the parameterizations, which were developed for the dynamics of black spruce ecosystems at the Bonanza Creek Long-Term Ecological Research site in Alaska, were evaluated by simulating C dynamics at eddy correlation tower sites in the Boreal Ecosystem Atmosphere Study (BOREAS) for black spruce ecosystems in the northern study area (northern site) and the southern study area (southern site) with local climate data. We compared simulated monthly growing season (May to September) estimates of gross primary production (GPP), total ecosystem respiration (RESP), and net ecosystem production (NEP) from 1994 to 1997 to available field-based estimates at both sites. At the northern site, monthly growing season estimates of GPP and RESP for the coupled and uncoupled simulations were highly correlated with the field-based estimates (coupled: R 2= 0.77, 0.88 for GPP and RESP; uncoupled: R 2 = 0.67, 0.92 for GPP and RESP). Although the simulated seasonal pattern of NEP generally matched the field-based data, the correlations between field-based and simulated monthly growing season NEP were lower (R 2 = 0.40, 0.00 for coupled and uncoupled simulations, respectively) in comparison to the correlations between field-based and simulated GPP and RESP. The annual NEP simulated by the coupled parameterization fell within the uncertainty of field-based estimates in two of three years. On the other hand, annual NEP simulated by the uncoupled parameterization only fell within the field-based uncertainty in one of three years. At the southern site, simulated NEP generally matched field-based NEP estimates, and the correlation between monthly growing season field-based and simulated NEP (R 2 = 0.36, 0.20 for coupled and uncoupled simulations, respectively) was similar to the correlations at the northern site. To evaluate the role of N dynamics in C balance of black spruce ecosystems across North America, we simulated historical and projected C dynamics from 1900 to 2100 with a global-based climatology at 0.5° resolution (latitude × longitude) with both the coupled and uncoupled parameterizations of TEM. From analyses at the northern site, several consistent patterns emerge. There was greater inter-annual variability in net primary production (NPP) simulated by the uncoupled parameterization as compared to the coupled parameterization, which led to substantial differences in inter-annual variability in NEP between the parameterizations. The divergence between NPP and heterotrophic respiration was greater in the uncoupled simulation, resulting in more C sequestration during the projected period. These responses were the result of fundamentally different responses of the coupled and uncoupled parameterizations to changes in CO2 and climate.  相似文献   

5.
Aims There have been a large number of studies on the independent separate responses of fine roots to warming and nitrogen deposition, but with contradictory reporting. Fine root production plays a critical role in ecosystem carbon, nutrient and water cycling, yet how it responds to the interactive warming and nitrogen addition is not well understood. In the present study, we aimed to examine the interactive effects of soil warming and nitrogen addition on fine root growth of 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in subtropical China. Methods A mesocosm experiment, with a factorial design of soil warming (ambient, +5 °C) and nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1, ambient + 80 kg·hm-2·a-1), was carried out in the Chenda State-owned Forest Farm in Sanming City, Fujian Province, China. Fine root production (indexed by the number of fine roots emerged per tube of one year) was measured biweekly using minirhizotrons from March of 2014 to February of 2015. Important findings (1) The two-way ANOVA showed that soil warming had a significant effect on fine root production, while nitrogen addition and soil warming × nitrogen addition had no effect. (2) The three-way ANOVA (soil warming, nitrogen addition and diameter class) showed that soil warming, diameter class and soil warming × diameter class had significant effects on fine root production, especially for the number of fine roots in 0-1 mm diameter class that had been significantly increased by soil warming. Compared with the 1-2 mm roots, the 0-1 mm roots seemed more flexible. (3) Repeated measures of ANOVA (soil warming, nitrogen addition and season) showed that soil warming, season, soil warming × season, and soil warming × nitrogen addition × season had significant effects on fine root production. In spring, the number of fine roots was significantly increased both by soil warming and soil warming × season, while soil warming, nitrogen addition, soil warming × nitrogen addition significantly decreased fine root production in the summer. (4) Soil warming, soil layer, soil warming × soil layer had significant effects on fine root production. The number of in-growth fine roots was significantly increased by soil warming at the 20-30 cm depth only. It seemed that warming forced fine roots to grow deeper in the soil. In conclusion, soil warming significantly increased fine root production, but they had different responses and were dependent of different diameter classes, seasons and soil layers. Nitrogen addition had no effect on fine root production. Only in spring and summer, soil warming and nitrogen addition had significant interactive effects.  相似文献   

6.
The immunoregulatory effects of dietary omega-3 fatty acids are still not fully characterized. The aim of this study was to determine whether dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake limits intestinal ischemia–reperfusion (IR) injury. To test this, rats were fed either control or EPA/DHA supplemented diet for 3 weeks following which they underwent either a sham or an IR surgical protocol. A significant reduction in mucosal damage was observed after EPA/DHA supplemented diet as reflected by maintenance of total protein content. To address the underlying mechanisms of protection, we measured parameters of oxidative stress, intestinal and serological cytokines and intestinal eicosanoids. Interestingly, EPA/DHA fed animals displayed a higher activity of oxidative stress enzyme machinery, i.e., superoxide dismutase and catalase in addition to a reduction in total nitrate/nitrite content. While no changes in cytokines were observed, eicosanoid analyses of intestinal tissue revealed an increase in metabolites of the 12-lipoxygenase pathway following IR. Further, IR in EPA/DHA fed animals was accompanied by a significant increase of 17,18-epoxyeicosatetraenoic acid, 8-Iso prostaglandin F and thromboxane B3, by more than 12-, 6-, 3-fold, respectively. Thus, the data indicate that EPA/DHA supplementation may be able to reduce early intestinal IR injury by anti-oxidative and anti-inflammatory mechanisms.  相似文献   

7.
Zou J  Rogers WE  DeWalt SJ  Siemann E 《Oecologia》2006,150(2):272-281
The EICA hypothesis predicts that shifts in allocation of invasive plants give rise to higher growth rates and lower herbivore defense levels in their introduced range than conspecifics in their native range. These changes in traits of invasive plants may also affect ecosystem processes. We conducted an outdoor pot experiment with Chinese tallow tree (Sapium sebiferum, Euphorbiaceae) seedlings from its native (Jiangsu, China, native ecotype) and introduced ranges (Texas, USA, invasive ecotype) to compare their relative performances in its native range and to examine ecotype effects on soil processes with and without fertilization. Consistent with predictions, plant (shoot and root) mass was significantly greater and leaf defoliation tended to be higher, while the root:shoot ratio was lower for the invasive ecotype relative to the native ecotype. Seasonal amounts of soil–plant system CO2 and N2O emissions were higher for the invasive ecotype than for the native ecotype. Soil respiration rates and N2O emission increases from fertilization were also greater for the invasive ecotype than for the native ecotype, while shoot-specific respiration rates (g CO2–C g−1 C day−1) did not differ between ecotypes. Further, soil inorganic N (ammonium and nitrate) was higher, but soil total N was lower for soils with the invasive ecotype than soils with the native ecotype. Compared with native ecotypes, therefore, invasive ecotypes may have developed a competition advantage in accelerating soil processes and promoting more nitrogen uptake through soil–plant direct interaction. The results of this study suggest that soil and ecosystem processes accelerated by variation in traits of invasive plants may have implications for their invasiveness.  相似文献   

8.
Symbiotic relationships between phytoplankton and N2-fixing microorganisms play a crucial role in marine ecosystems. The abundant and widespread unicellular cyanobacteria group A (UCYN-A) has recently been found to live symbiotically with a haptophyte. Here, we investigated the effect of nitrogen (N), phosphorus (P), iron (Fe) and Saharan dust additions on nitrogen (N2) fixation and primary production by the UCYN-A–haptophyte association in the subtropical eastern North Atlantic Ocean using nifH expression analysis and stable isotope incubations combined with single-cell measurements. N2 fixation by UCYN-A was stimulated by the addition of Fe and Saharan dust, although this was not reflected in the nifH expression. CO2 fixation by the haptophyte was stimulated by the addition of ammonium nitrate as well as Fe and Saharan dust. Intriguingly, the single-cell analysis using nanometer scale secondary ion mass spectrometry indicates that the increased CO2 fixation by the haptophyte in treatments without added fixed N is likely an indirect result of the positive effect of Fe and/or P on UCYN-A N2 fixation and the transfer of N2-derived N to the haptophyte. Our results reveal a direct linkage between the marine carbon and nitrogen cycles that is fuelled by the atmospheric deposition of dust. The comparison of single-cell rates suggests a tight coupling of nitrogen and carbon transfer that stays balanced even under changing nutrient regimes. However, it appears that the transfer of carbon from the haptophyte to UCYN-A requires a transfer of nitrogen from UCYN-A. This tight coupling indicates an obligate symbiosis of this globally important diazotrophic association.  相似文献   

9.
Four samples of natural ecosystems and one sample from an activated sludge treatment plant were mixed together and progressively adapted to alternating aerobic/anoxic phases in the presence of nitrate in order to enrich the microflora in aerobic denitrifiers. Aerobic denitrifying performances of this mixed ecosystem at various dissolved oxygen concentrations and various carbon–nitrogen loads were evaluated and compared to those obtained with the aerobic denitrifier Microvirgula aerodenitrificans. The consortium and the pure strain exhibited an aerobic denitrifying activity at air saturation conditions (7 mg dissolved oxygen l–1), i.e. there was co-respiration of the two electron acceptors with significant specific nitrate reduction rates. Dissolved oxygen concentrations had no influence on denitrifying performances above a defined threshold: 0.35 mg l–1 for the consortium and 4.5 mg l–1 for M. aerodenitrificans respectively. Under these thresholds, decreasing the dissolved oxygen concentrations enhanced the denitrifying activity of each culture. The higher the carbon and nitrogen loads, the higher the performance of the aerobic denitrifying ecosystem. However, for M. aerodenitrificans, the nitrate reduction percentage was affected more by variations in nitrogen load than in carbon load. Received: 6 December 1999 / Received revision: 8 March 2000 / Accepted: 10 March 2000  相似文献   

10.
The results of the experiments discussed here present changes in the chemical composition of xylem sap of tomato seedlings cultivated in hydroponics on media containing 5 mmol HCO3 and an N-source given as NO3 , NH4 + or these two forms in different proportions. The occurrence of free NH4 + in the xylem sap of NH4 +-seedlings and in NO3 -seedlings indicates that the process of N-assimilation was not only confined to roots. The application of HCO3 to the medium effected a decrease in the concentration of NH4 + in the xylem sap of NH4 +-seedlings, having no effect on changes in the concentration of NO3 or NH4 + in NO3 -seedlings. Malate, citrate, fumarate, and succinate were identified in the xylem sap. The concentration of carboxylates in NO3 -seedlings exceeded by about 50% that recorded in NH4 +-seedlings. The highest concentration of malate constituting from 80% to 93.5% of this fraction, was determined in this group of compounds. The enrichment of the medium with HCO3 ions induced an increase in the content of carboxylates, chiefly of malate. In these experimental conditions an increase in the malate concentration in the xylem sap of NO3 and NH4 +-seedlings reached relative values of 100% and 36%, respectively. The total concentration of amides and amino acids was about 2.6 times higher in the xylem sap of NH4 +-seedlings than in NO3 -seedlings. Amide glutamine was the main component of this fraction in xylem sap and its total concentration was about 3.3 times higher in NH4 +-seedlings than that determined in NO3 -seedlings. Glutamine, glutamate, aspargine, and aspartate constituted from 69% to 77% of this fraction. The concentration of the remaining amino acids varied from 0.6% to 7%. The enrichment of the medium with HCO3  ions also effected an increase in the concentration of amides and amino acids in the xylem sap by about 17% and 56% in the case of NO3 and NH4 +-seedlings, respectively, in comparison with the respective controls (without HCO3 ). Abbreviations: DAG – days after germination; DIC – dissolved inorganic carbon; GOGAT – glutamine:2-oxoglutarate aminotransferase; GS – glutamine synthetase; PAR – photosynthetically active radiation; PEPc – phosphoenolpyruvate carboxylase  相似文献   

11.
We studied the growth and photosynthesis of the hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil and the effects of soil N load, to determine the performance of this species as reforestation material in serpentine regions. We prepared 16 experimental plots (2 m × 4 m each), eight on serpentine and eight on brown forest soil, and planted one-year-old cutting seedlings of the hybrid larch F1 in each plot, in May 2007. Ammonium sulfate was supplied to half of the plots of each soil type in 2008 and 2009, at a load of 47 kg N ha−1 year−1. Although the growth and photosynthetic capacity of hybrid larch F1 seedlings in the serpentine soil were limited, the rate of growth in serpentine soil was greater than that of Sakhalin spruce (Picea glehnii) that is dominant species in serpentine regions. There was significant interaction between soil type and N load for the growth and photosynthetic parameters. The N load adversely affected growth and photosynthetic parameters in the serpentine soil, while improved them in brown forest soil. Although the growth rate of hybrid larch F1 without N loading showed high potential as an afforestation species in serpentine region, increasing deposition of N might be a threat to the growth and photosynthesis of the hybrid larch F1 in serpentine soil.  相似文献   

12.
Panigatti  M. C.  Maine  M. A. 《Hydrobiologia》2003,492(1-3):151-157
Water – Salvinia herzogii – sediment systems were exposed to different phosphorus and nitrogen combinations in outdoor experiments. The aim was to estimate the amounts of P immobilized in macrophytes and sediments, as well as to elucidate whether or not the presence of N affects the retention of P. The following components were added: o-P, o-P + NH4 +, o-P + NO3 + NH4 +, o-P + NO3 . The concentration of nutrients was periodically determined throughout the experiment (28 days). The concentrations of P and N in plant tissues and sediments were determined at the beginning and the end of the experiment. Sequential extractions of P-fractions in sediment were performed using the EDTA method (Golterman, 1996). The removal efficiency of P in water was 95–99%. The removal of NH4 + (97–98%) was more effective than that of NO3 (44–86%). The presence of nitrogen species increased the removal velocity of o-P from water, NH4 + was the most effective species. Sediments not only had higher P removal rates than macrophytes but, in the control treatment without macrophytes, they reached the values obtained by macrophytes plus sediments in the other treatments. The adsorption of P takes place at the surface layer of the sediment (1 cm). Most of the P incorporated into the sediment during the experiment was sorbed by the fraction Fe(OOH)P. The addition of nutrients to water modified the leaves/lacinias weight ratio.  相似文献   

13.
Photosynthetic rates and related anatomical characteristics of leaves developed at three levels of irradiance (1200, 300 and 80 umol · m–2 · s–1) were determined in the C4-like species Flaveria brownii A.M. Powell, the C3–C4-intermediate species F. linearis Lag., and the F1 hybrid between them (F. brownii × F. linearis). In the C3–C4 and F1 plants, increases in photosynthetic capacity per unit leaf area were strongly correlated with changes in mesophyll area per unit leaf area. The C4-like plant F. brownii, however, showed a much lower correlation between photosynthetic capacity and mesophyll area per unit leaf area. Plants of F. brownii developed at high irradiance showed photosynthetic rates per unit of mesophyll cell area 50% higher than those plants developed at medium irradiance. These results along with an increase in water-use efficiency are consistent with an increase of C4 photosynthesis in high-irradiance-grown F. brownii plants, whereas in the other two genotypes such plasticity seems to be absent. Photosynthetic discrimination against 13C in the three genotypes was less at high than at low irradiance, with the greatest change occurring in F. brownii. Discrimination against 13C expressed as 13C was linearly correlated (r 2 = 0.81; P<0.001) with the ratio of bundle-sheath volume to mesophyll cell area when all samples from the three genotypes were combined. This tissue ratio increased for F. brownii and the F1 hybrid as growth irradiance increased, indicating a greater tendency towards Kranz anatomy. The results indicated that F. brownii had plasticity in its C4-related anatomical and physiological characteristics as a function of growth irradiance, whereas plasticity was less evident in the F1 hybrid and absent in F. linearis.Abbreviations A leaf surface area - Ama, Amn, Alm total ma, mn or lm cell surface area - bs vascular bundle sheath - lm large spongy-mesophyll cells - ma mesophyll cells adjacent to bundle sheath - mn mesophyll cells not adjacent to bundle sheath - Pn net photosynthesis - (H, M, L) PPFD (high, medium, low) photosynthetic photon flux density - SLDW specific leaf dry wight - Vbs bs volume - V(ma + mn + bs) total photosynthetic tissue volume - 13C 13C discrimination We thank Mrs. Lisa Smith for technical assistance in light microscopy and Dr. Ned Friedman (Department of Botany, University of Georgia, Athens, GA, USA) for the use of digitizing equipment. Participation of Dr. J.L. Araus in this work was supported by a grant Beca de Especialización para Doctores y Tecnólogos en el Extranjero, from Ministerio de Educatión y Ciencia, Spain.  相似文献   

14.
Two Chinese cultivars of Glycine max, namely Heidou and Jindou, were exposed to ambient and supplemental levels of ultraviolet-B (UV-B) radiation simulating a 24% depletion in stratospheric ozone over a 9-week growing period at an outdoor experimental site. Enhanced UV-B irradiation significantly reduced leaf, stem and root biomass, and plant height in the Heidou cultivar. These changes were associated with a diminished photosynthetic (net CO2) rate, stomatal conductance, transpiration rate and water use efficiency, and accompanied by decreased foliar chlorophyll a and b, and total carotenoid concentrations and elevated foliar flavonoid levels. In contrast, the Jindou cultivar displayed only a significantly reduced stem mass and stomatal conductance, but no changes in pigment composition under elevated UV-B. The greater tolerance of elevated UV-B exposures by the Jindou cultivar was attributed partly to its higher foliar flavonoid content, smaller leaf size, thicker leaf cuticle and scabrous (hairy) lamina. Nevertheless both the Heidou cultivar and the less UV-B sensitive Jindou cultivar displayed an altered carbon isotope composition (δ13C) in their tissues following exposure to elevated UV-B. Such carbon isotope composition changes in plant tissues suggested a means of early detection of photosynthetic disruption in plants with anticipated increase in UV-B due to stratospheric ozone depletion.  相似文献   

15.
Aims Two-year-old seedlings of Phoebe zhennan were used in this study to explore the responses of osmotic adjustment and active oxygen metabolism to drought stress and the mitigation effect of nitrogen application. Methods The soil water content was firstly adjusted to four treatment levels, i.e. 80% of field water holding capacity (80% FC), 50% FC, 30% FC and 15% FC, respectively. The physiological variables of plants were measured after one week, and then three nitrogen application rates, control (N0), medium nitrogen (MN) and high nitrogen (HN) were performed at an interval of 7 days for four times (7 d, 14 d, 21 d and 28 d, respectively). The same physiological variables were determined again one month after the accomplishment of nitrogen application. Important findings 1) The free proline (Pro) and soluble sugar (SS) contents in the leaves increased significantly with the aggravation of drought stress after 7 days of drought, but the content of soluble protein (SP) was firstly increased and then declined. The increase of Pro content was especially obvious under severe drought (15% FC). After nitrogen application, the content of Pro raise further, but the values varied in drought treatment. The SS contents under sufficient water supply (80% FC) and mild drought (50% FC) were decreased by MN, but it did not change significantly when supplied with HN despite the soil water content. After nitrogen application, the SP contents under 80% FC and 50% FC were lower than those of no exogenous N, while they were opposite response under 30% FC and 15% FC. 2) Before nitrogen application, with the aggravation of drought stress, the hydrogen peroxide (H2O2) content, superoxide dismutase (SOD) activity, catalase (CAT) activity increased significantly, and the peroxidase (POD) activity showed an up-down trend. After nitrogen application, the content of H2O2 was generally deceased at each water condition, with the maximum decrease at MN, while the HN treatment was not conducive to reduce the content of H2O2. The activities of three kinds of enzymes responded differently to the severity of drought and the level of nitrogen application. 3) Before nitrogen application, the content of malondial-dehyde (MDA) in leaves increased significantly when the soil water content declined to and below 50% FC. The relative electrical conductivity (REC) was decreased at first, and followed by significant increase. Except severe drought (15% FC) stress, the MDA content showed a decreasing trend at MN, but a rebound at HN. As regards severe drought stress, however, the content of MDA increased at both MN and HN, indicating that nitrogen application is not a good choice to alleviate the damage caused by severe drought stress. 4)Two-factor ANOVA revealed an obvious interaction between nitrogen application and drought stress. In conclusion, a proper amount of nitrogen (1.35 g·a–1 for each sapling) could somewhat alleviate drought stress no severer than 15% FC on seedlings of Phoebe zhennan, but excessive nitrogen at rate of or more than 2.70 g·a–1 per sapling is not recommended. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

16.
[Pt(COD)Cl2] (COD=1,5-cyclooctadiene) is a versatile starting material for the synthesis of Pt(II) compounds. The preparations of the new compounds [Pt(COD)Cl(NO3)], [Pt(COD)(NO3)2] and [Pt(PPh3)3(NO3)](NO3) and also of the known compounds cis[Pt(PPh3)2Cl2], cis [Pt(PPh3)2Cl(NO3)], cis[Pt(PPh3)2(NO3)2] and [Pt(PPh3)3Cl](NO3)are reported. The compounds are characterized by elemental analysis, 31P{1H} NMR spectroscopy and IR spectroscopy.  相似文献   

17.
18.
19.
Kim S  Rhim H 《Molecules and cells》2011,32(3):289-294
Overload of intracellular Ca2+ has been implicated in the pathogenesis of neuronal disorders, such as Alzheimer’s disease. Various mechanisms produce abnormalities in intracellular Ca2+ homeostasis systems. L-type Ca2+ channels have been known to be closely involved in the mechanisms underlying the neurodegenerative properties of amyloid-β (Aβ) peptides. However, most studies of L-type Ca2+ channels in Aβ-related mechanisms have been limited to CaV1.2, and surprisingly little is known about the involvement of CaV1.3 in Aβ-induced neuronal toxicity. In the present study, we examined the expression patterns of CaV1.3 after Aβ25–35 exposure for 24 h and compared them with the expression patterns of CaV1.2. The expression levels of CaV1.3 were not significantly changed by Aβ25–35 at both the mRNA levels and the total protein level in cultured hippocampal neurons. However, surface protein levels of CaV1.3 were significantly increased by Aβ25–35, but not by Aβ35–25. We next found that acute treatment with Aβ25–35 increased CaV1.3 channel activities in HEK293 cells using whole-cell patch-clamp recordings. Furthermore, using GTP pulldown and co-immunoprecipitation assays in HEK293 cell lysates, we found that amyloid precursor protein interacts with β3 subunits of Ca2+ channels instead of CaV1.2 or CaV1.3 α1 subunits. These results show that Aβ25–35 chronically or acutely upregulates CaV1.3 in the rat hippocampal and human kidney cells (HEK293). This suggests that CaV1.3 has a potential role along with CaV1.2 in the pathogenesis of Alzheimer’s disease.  相似文献   

20.
ABSTRACT

The effect of (H2O)n (n?=?1–3) on the HNO2?+?HO → H2O?+?NO2 reaction has been investigated theoretically at the CCSD(T)/CBS//B3LYP/6-311?+?G(3df,2pd) level of theory, coupled with rate constant calculations by using variational transition state theory. Our results show that, when (H2O)n (n?=?1–3) was introduced into HNO2?+?HO → H2O?+?NO2 reaction, the product of the reaction did not change, but the potential energy surface became quite complex, yielding two kinds of reactions, namely HNO2···(H2O)n (n?=?1–3)?+?HO and HO···(H2O)n (n?=?1–3)?+?HNO2. In all catalysed reactions with (H2O)n (n?=?1–3), the former reaction type is favourable than the latter one with its effective rate constant respectively larger by 6–1 orders of magnitude than that of latter one. Within the temperature range of 240–320?K, the relative impacts on water monomer are much more obvious than dimer and trimer. However, the effective rate constant with water is larger by 658%–17% times of magnitude, showing that the positive water effect is obvious under atmospheric conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号