首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal behavior is flexible, and the same individual can exhibit variable expressions under the equivalent ecological situations (i.e., within-individual behavioral variation). This study examines the evolution of within-individual behavioral variation using an individual-based model. A common predation scenario is considered where a predator spends a period h to handle and consume a captured prey. The model assumes the handling time of the predator to be a random variable. The average and within-individual variance of handling time are described by \(\mu _h\) and \(\sigma _h^2\), respectively, where each individual has its own unique \(\mu _h\) and \(\sigma _h^2\). Using a genetic algorithm, the evolution of \(\sigma _h^2\) is traced. The results show that natural selection acts on both \(\mu _h\) and \(\sigma _h^2\), and the optimal behavioral variation depends on the density of prey. In particular, individuals with high behavioral variance \(\sigma _h^2\) are more likely selected when prey density is low. Individual based modeling can be a useful tool for studying the ultimate significance of within-individual behavioral variation and generating empirically testable predictions. The mechanisms of the evolution of within-individual behavioral variation and their ecological implications are discussed.  相似文献   

2.
We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral \(\hbox {Na}^+\)/H\(^+\) exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, \(\hbox {Na}^+\)\(\hbox {HCO}^-_3\) cotransporters are more efficient than basolateral K\(^+\) and \(\hbox {Cl}^-\) channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular \(\hbox {Na}^+\) reabsorption, that is, to limit the net \(\hbox {Na}^+\) flux decrease during a hyposmotic challenge or the net \(\hbox {Na}^+\) flux increase during a hyperosmotic challenge.  相似文献   

3.
4.
5.
6.
Aberrant NSD2 methyltransferase activity is implicated as the oncogenic driver in multiple myeloma, suggesting opportunities for novel therapeutic intervention. The methyltransferase activity of NSD2 resides in its catalytic SET domain, which is conserved among most lysine methyltransferases. Here we report the backbone \(\hbox {H}^{\mathrm{N}}\), N, C\(^{\prime }\), \(\hbox {C}^\alpha\) and side-chain \(\hbox {C}^\beta\) assignments of a 25 kDa NSD2 SET domain construct, spanning residues 991–1203. A chemical shift analysis of C\(^{\prime }\), \(\hbox {C}^\alpha\) and \(\hbox {C}^\beta\) resonances predicts a secondary structural pattern that is in agreement with homology models.  相似文献   

7.
8.
Previous genomewide association studies (GWAS) and meta-analyses have enumerated several genes/loci in major histocompatibility complex region, which are consistently associated with rheumatoid arthritis (RA) in different ethnic populations. Given the genetic heterogeneity of the disease, it is necessary to replicate these susceptibility loci in other populations. In this case, we investigate the analysis of two SNPs, rs13192471 and rs6457617, from the human leukocyte antigen (HLA) region with the risk of RA in Tunisian population. These SNPs were previously identified to have a strong RA association signal in several GWAS studies. A case–control sample composed of 142 RA patients and 123 healthy controls was analysed. Genotyping of rs13192471 and rs6457617 was carried out using real-time PCR methods by TaqMan allelic discrimination assay. A trend of significant association was found in rs6457617 TT genotype with susceptibility to RA (\(P = 0.04\), \(p_{c} = 0.08\), \(\hbox {OR} = 1.73\)). Moreover, using multivariable analysis, the combination of rs6457617*TT–HLA-DRB1*\(04^{+}\) increased risk of RA (\(\hbox {OR} = 2.38\)), which suggest a gene–gene interaction event between rs6457617 located within the HLA-DQB1 and HLA-DRB1. Additionally, haplotypic analysis highlighted a significant association of rs6457617*T–HLA-DRB1*\(04^{+}\) haplotype with susceptibility to RA (\(P = 0.018\), \(p_{c} = 0.036\), \(\hbox {OR} = 1.72\)). An evidence of association was shown subsequently in \(\hbox {antiCCP}^{+}\) subgroup with rs6457617 both in T allele and TT genotype (\(P = 0.01\), \(p_{c} = 0.03\), \(\hbox {OR} = 1.66\) and \(P = 0.008\), \(p_{c} = 0.024\), \(\hbox {OR} = 1.28\), respectively). However, no association was shown for rs13192471 polymorphism with susceptibility and severity to RA. This study suggests the involvement of rs6457617 locus as risk variant for susceptibility/severity to RA in Tunisian population. Secondly, it highlights the gene–gene interaction between HLA-DQB1 and HLA-DRB1.  相似文献   

9.
Respiratory viral infections are common in the general population and one of the most important causes of asthma aggravation and exacerbation. Despite many studies, it is not well understood how viral infections cause more severe symptoms and exacerbations in asthmatics. We develop a mathematical model of two types of macrophages that play complementary roles in fighting viral infection: classically \((\hbox {CA}\)-\(\hbox {M}\Phi )\) and alternatively activated macrophages \((\hbox {AA}\)-\(\hbox {M}\Phi )\). \(\hbox {CA}\)-\(\hbox {M}\Phi \) destroy infected cells and tissues to remove viruses, while \(\hbox {AA}\)-\(\hbox {M}\Phi \) repair damaged tissues. We show that a higher viral load or longer duration of infection provokes a stronger immune response from the macrophage system. By adjusting the parameters, we model the differences in response to respiratory viral infection in normal and asthmatic subjects and show how this skews the system toward a response that generates more severe symptoms in asthmatic patients.  相似文献   

10.
The present study aimed to investigate the association of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (\(n = 200\)) and age-matched, sex-matched and ethnicity-matched healthy controls (\(n = 200\)) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 gene was significantly different between cases and controls (\(P = 0.005\) and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, \(P = 0.020\)) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P \(=\) 0.005) genotypes of GSTP1 \(\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}\), and C/T (OR: 5.8, 95% CI: 1.26–26.34, \(P = 0.024\)) genotype of GSTP1 \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) with CAD. The A/G and G/G genotypes of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and C/T genotype of \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, \(P = 0.018\)). Moreover, the recessive model of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, \(P = 0.020\)). In conclusion, statistically significant associations of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) (A/G, G/G) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) (C/T) genotypes with CAD were observed.  相似文献   

11.
We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two \(\mathrm{Cl}^-/\mathrm{HCO}_3^-\) exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by \(\mathrm{Cl}^-\) movement. Here, a basolateral \(\mathrm{Na}^+/ \mathrm{K}^+\) adenosine triphosphatase pump (NaK-ATPase) and a \(\mathrm{Na}^+\)\(\mathrm{K}^+\)\(2 \mathrm{Cl}^-\) cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with \(\mathrm{Cl}^-\) well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of \(\mathrm{Ca}^{2+}\) ions from the internal stores of acinar cells, which triggers saliva secretion. \(\mathrm{Ca}^{2+}\)-dependent \(\mathrm{Cl}^-\) and \(\mathrm{K}^+\) channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that \(\mathrm{Cl}^-/ \mathrm{HCO}_3^-\) anion exchangers (Ae), coupled with a basolateral \(\mathrm{Na}^+/\hbox {proton}\) (\(\hbox {H}^+\)) (Nhe1) antiporter, regulate intracellular pH and act as a secondary \(\mathrm{Cl}^-\) uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823–G837, 1992; Melvin et al. in Annu Rev Physiol 67:445–469, 2005.  https://doi.org/10.1146/annurev.physiol.67.041703.084745). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate \(30\%\) decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677–10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary \(\mathrm{Cl}^-\) uptake and thus a key mechanism for saliva secretion. Here, by using ‘in-silico’ Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger’s cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.  相似文献   

12.
Changes in land use affect the terrestrial carbon stock through changes in the land cover. Research on land use and analysis of variations in carbon stock have practical applications in the optimization of land use and the mitigation of climate change effects. This study was conducted in Baixiang and Julu counties in the Taihang Piedmont by employing the trend analysis method to characterize the variation in county land use and carbon stock. The findings show that in both counties, agricultural and unused land areas decreased while built-up land area increased, and the reduction in cropland was the main reason behind the agricultural land reduction. An inflection point appeared on the cropland curves of Julu, because the cropland area decreased by 1576.97 hm\(^{2}\) from 2004 to 2006. Cropland area in Baixiang decreased from 1996 to 1998 by a total of 129.89 hm\(^{2}\) and then remained relatively stable after 1998. The total carbon storage and variation in land use in the two counties displayed similar trends. Total carbon reserves in Julu increased by 2.76 \(\times \) 10\(^{4}\) tC (carbon equivalent), while those in Baixiang decreased by 0.63 \(\times \) 10\(^{4}\) tC. Carbon stock of built-up land in Julu and Baixiang increased by 2.44 \(\times \) 10\(^{4}\) and 1.22 \(\times \) 10\(^{4}\) tC, respectively.  相似文献   

13.
Protein aggregation is a hallmark of many neurodegenerative diseases. In Parkinson’s disease protein misfolding of \(\upalpha \)-synuclein involves conformational changes in the protein structure that often results in self-association and aggregation leading to accumulation of \(\upalpha \)-synuclein in neuronal cells. The underlying mechanisms by which aggregations can lead to impaired cellular functions are often not understood. Meanwhile, there is growing evidence that links mitochondrial dysfunction to Parkinson’s disease. As both mitochondria and protein aggregation of \(\upalpha \)-synuclein have been shown to play a major role in Parkinson’s disease, it seems likely that a converging mechanism exists that links the two pathways.  相似文献   

14.
Computational modelling has received increasing attention to investigate multi-scale coupled problems in micro-heterogeneous biological structures such as cells. In the current study, we investigated for a single cell the effects of (1) different cell-substrate attachment (2) and different substrate modulus \(\textit{E}_\mathrm{s}\) on intracellular deformations. A fibroblast was geometrically reconstructed from confocal micrographs. Finite element models of the cell on a planar substrate were developed. Intracellular deformations due to substrate stretch of \(\lambda =1.1\), were assessed for: (1) cell-substrate attachment implemented as full basal contact (FC) and 124 focal adhesions (FA), respectively, and \(\textit{E}_\mathrm{s}\,=\,\)140 KPa and (2) \(\textit{E}_\mathrm{s}\,=\,10\), 140, 1000, and 10,000 KPa, respectively, and FA attachment. The largest strains in cytosol, nucleus and cell membrane were higher for FC (1.35\(\text {e}^{-2}\), 0.235\(\text {e}^{-2}\) and 0.6\(\text {e}^{-2}\)) than for FA attachment (0.0952\(\text {e}^{-2}\), 0.0472\(\text {e}^{-2}\) and 0.05\(\text {e}^{-2}\)). For increasing \(\textit{E}_\mathrm{s}\), the largest maximum principal strain was 4.4\(\text {e}^{-4}\), 5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\) and 5.3\(\text {e}^{-4}\) in the membrane, 9.5\(\text {e}^{-4}\), 1.1\(\text {e}^{-4}\), 1.2\(\text {e}^{-3}\) and 1.2\(\text {e}^{-3}\) in the cytosol, and 4.5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\), 5.7\(\text {e}^{-4}\) and 5.7\(\text {e}^{-4}\) in the nucleus. The results show (1) the importance of representing FA in cell models and (2) higher cellular mechanical sensitivity for substrate stiffness changes in the range of cell stiffness. The latter indicates that matching substrate stiffness to cell stiffness, and moderate variation of the former is very effective for controlled variation of cell deformation. The developed methodology is useful for parametric studies on cellular mechanics to obtain quantitative data of subcellular strains and stresses that cannot easily be measured experimentally.  相似文献   

15.
Development of techniques for detection of mental fatigue has varied applications in areas where sustaining attention is of critical importance like security and transportation. The objective of this study is to develop a novel real-time driving fatigue detection methodology based on dry Electroencephalographic (EEG) signals. The study has employed two methods in the online detection of mental fatigue: power spectrum density (PSD) and sample entropy (SE). The wavelet packets transform (WPT) method was utilized to obtain the \(\theta \) (4–7 Hz), \(\alpha \) (8–12 Hz) and \(\beta \) (13–30 Hz) bands frequency components for calculating corresponding PSD of the selected channels. In order to improve the fatigue detection performance, the system was individually calibrated for each subject in terms of fatigue-sensitive channels selection. Two fatigue-related indexes: (\(\theta +\alpha \))/\(\beta \) and \(\theta \)/\(\beta \) were computed and then fused into an integrated metric to predict the degree of driving fatigue. In the case of SE extraction, the mean of SE averaged across two EEG channels (‘O1h’ and ‘O2h’) was used for fatigue detection. Ten healthy subjects participated in our study and each of them performed two sessions of simulated driving. In each session, subjects were required to drive simulated car for 90 min without any break. The results demonstrate that our proposed methods are effective for fatigue detection. The prediction of fatigue is consistent with the observation of reaction time that was recorded during simulated driving, which is considered as an objective behavioral measure.  相似文献   

16.
We prove almost sure exponential stability for the disease-free equilibrium of a stochastic differential equations model of an SIR epidemic with vaccination. The model allows for vertical transmission. The stochastic perturbation is associated with the force of infection and is such that the total population size remains constant in time. We prove almost sure positivity of solutions. The main result concerns especially the smaller values of the diffusion parameter, and describes the stability in terms of an analogue \(\mathcal{R}_\sigma\) of the basic reproduction number \(\mathcal{R}_0\) of the underlying deterministic model, with \(\mathcal{R}_\sigma \le \mathcal{R}_0\). We prove that the disease-free equilibrium is almost sure exponentially stable if \(\mathcal{R}_\sigma <1\).  相似文献   

17.
Tryptophan fluorescence lifetimes were analyzed for three proteins: human serum albumin, bovine serum albumin, and bacterial luciferase, which contain one, two, and seven tryptophan residues, respectively. For all of the proteins, the fluorescence decays were fitted by three lifetimes: τ1 = 6–7 ns, τ2 = 2.0–2.3 ns, and τ3 ≤ 0.1 ns (the native state), and τ1 = 4.4–4.6 ns, τ2 = 1.7–1.8 ns, and τ3 ≤ 0.1 ns (the denatured state). Corresponding decay-associated spectra had similar peak wavelengths and spectrum half-widths both in the native state (\(\lambda _{\max }^{{\tau _1}} = 324nm\), \(\lambda _{\max }^{{\tau _2}} = 328nm\), and \(\lambda _{\max }^{{\tau _3}} = 315nm\)), and in the denatured state (\(\lambda _{\max }^{{\tau _1}} = 350nm\), \(\lambda _{\max }^{{\tau _2}} = 343nm\), and \(\lambda _{\max }^{{\tau _3}} = 317nm\)). The differences in the steady-state spectra of the studied proteins were accounted for the individual ratio of the lifetime component contributions. The lifetime components were compared with a classification of tryptophan residues in the structure of these proteins within the discrete states model.  相似文献   

18.
A general mathematical model of anthrax (caused by Bacillus anthracis) transmission is formulated that includes live animals, infected carcasses and spores in the environment. The basic reproduction number \(\mathcal {R}_0\) is calculated, and existence of a unique endemic equilibrium is established for \(\mathcal {R}_0\) above the threshold value 1. Using data from the literature, elasticity indices for \(\mathcal {R}_0\) and type reproduction numbers are computed to quantify anthrax control measures. Including only herbivorous animals, anthrax is eradicated if \(\mathcal {R}_0 < 1\). For these animals, oscillatory solutions arising from Hopf bifurcations are numerically shown to exist for certain parameter values with \(\mathcal {R}_0>1\) and to have periodicity as observed from anthrax data. Including carnivores and assuming no disease-related death, anthrax again goes extinct below the threshold. Local stability of the endemic equilibrium is established above the threshold; thus, periodic solutions are not possible for these populations. It is shown numerically that oscillations in spore growth may drive oscillations in animal populations; however, the total number of infected animals remains about the same as with constant spore growth.  相似文献   

19.
Okra’s (Abelmoschus esculentus (L.) Moench) commercial cultivation is threatened in the tropics due to high incidence of yellow vein mosaic virus (YVMV) disease. Okra geneticists across the world tried to understand the inheritance pattern of YVMV disease tolerance without much success. Therefore, the inheritance pattern of YVMV disease in okra was revisited by employing six generations (\(\hbox {P}_{1}\), \(\hbox {P}_{2}\), \(\hbox {F}_{1}\), \(\hbox {F}_{2}\), \(\hbox {BC}_{1}\) and \(\hbox {BC}_{2}\)) of four selected crosses (one tolerant \(\times \) tolerant, two tolerant \(\times \) susceptible and one susceptible \(\times \) susceptible) using two tolerant (BCO-1 and Lal Bhendi) and two susceptible (Japanese Jhar Bhendi and PAN 2127) genotypes. Qualitative genetic analysis was done on the basis of segregation pattern of tolerant and susceptible plants in \(\hbox {F}_{2}\) and backcross generations of all the four crosses. It revealed that a single dominant gene along with some minor factors governed the disease tolerant trait in both the tolerant parents used. However, it was observed that genes governing disease tolerance identified in both the tolerant variety used was different. It could be concluded that the gene governing YVMV disease tolerance in okra was genotype specific. Further, duplicate gene action as evident from an approximate ratio of 15 : 1 (tolerant : susceptible) in the \(\hbox {F}_{2}\) population in the cross of two tolerant varieties gave a scope of increasing the tolerance level of the hybrid plants when both the tolerant genes are brought together. However, generation mean analysis revealed involvement of both additive and nonadditive effects in the inheritance of disease tolerance. Thus, the present study confirms that a complicated genetic inheritance pattern is involved in the disease tolerance against YVMV trait. The major tolerance genes could be transferred to other okra varieties, but the tolerance breaking virus strains might not allow them to achieve tolerance in stable condition. Therefore, accumulation of additional genes may be needed for a sustainable tolerance phenotype in okra.  相似文献   

20.
Caspase-1-mediated pyroptosis is the predominance for driving CD4\(^{+}\) T cells death. Dying infected CD4\(^{+}\) T cells can release inflammatory signals which attract more uninfected CD4\(^{+}\) T cells to die. This paper is devoted to developing a diffusive mathematical model which can make useful contributions to understanding caspase-1-mediated pyroptosis by inflammatory cytokines IL-1\(\beta \) released from infected cells in the within-host environment. The well-posedness of solutions, basic reproduction number, threshold dynamics are investigated for spatially heterogeneous infection. Travelling wave solutions for spatially homogeneous infection are studied. Numerical computations reveal that the spatially heterogeneous infection can make \(\mathscr {R}_0>1\), that is, it can induce the persistence of virus compared to the spatially homogeneous infection. We also find that the random movements of virus have no effect on basic reproduction number for the spatially homogeneous model, while it may result in less infection risk for the spatially heterogeneous model, under some suitable parameters. Further, the death of infected CD4\(^{+}\) cells which are caused by pyroptosis can make \(\mathscr {R}_0<1\), that is, it can induce the extinction of virus, regardless of whether or not the parameters are spatially dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号