首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For decades, authors have described unusual cell structures, referred to as cell-in-cell structures, in which whole cells are found in the cytoplasm of other cells. One well-characterized process that results in the transient appearance of such structures is the engulfment of apoptotic cells by phagocytosis. However, many other types of cell-in-cell structure have been described that involve viable non-apoptotic cells. Some of these structures seem to form by the invasion of one cell into another, rather than by engulfment. The mechanisms of cell-in-cell formation and the possible physiological roles of these processes will be discussed.  相似文献   

2.
3.
Finite element-based computer simulations are used to investigate a number of phenomena, including tissue engulfment, cell sorting, and checkerboard-pattern formation, exhibited by heterotypic cell aggregates. The simulations show that these phenomena can be driven by a single equivalent force, namely a surface (or interfacial) tension, that results from cytoskeletal components and cell-cell adhesions. They also reveal that tissue engulfment, cell sorting, and checkerboard-pattern formation involve several discernible mechanical features or stages. With the aid of analytical arguments, we identify the conditions necessary for each of these phenomena. These findings are consistent with previous experimental investigations and computer simulations, but pose significant challenges to current theories of cell sorting and tissue engulfment.  相似文献   

4.
This paper employs substrates that are patterned with shapes having well-defined geometric cues to characterize the influence of curvature on the polarization of highly metastatic B16F10 rat melanoma cells. Substrates were patterned using microcontact printing to define adhesive islands of defined shape and size on a background that otherwise prevents cell adhesion. Cells adherent to these surfaces responded to local curvature at the perimeter of the adhesive islands; convex features promoted the assembly of lamellipodia and concave features promoted the assembly of stress filaments. Cells adherent to rectangular shapes displayed a polarized cytoskeleton that increased with the aspect ratio of the shapes. Shapes that combined local geometric cues, by way of concave or convex edges, with aspect ratio were used to understand the additive effects of shape on polarization. The dependence of cell polarity on shape was determined in the presence of small molecules that alter actomyosin contractility and revealed a stronger dependence on contractility for shapes having straight edges, in contrast to those having curved edges. This study demonstrates that the cytoskeleton modulates cell polarity in response to multiple geometric cues in the extracellular environment.  相似文献   

5.
Nams VO 《PloS one》2011,6(7):e21886
Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance.  相似文献   

6.
An understanding of cell-invasive behavior has been limited by the lack of in vivo models where this activity can be clearly visualized and manipulated. We show that a single cell in the Caenorhabditis elegans gonad, the anchor cell (AC), initiates uterine-vulval contact through a cell invasion event. Using genetic analysis, laser ablations, and cell-specific markers, we demonstrate that AC invasion is predominantly stimulated by the 1 degrees vulval lineage cells, which generate a diffusible signal that promotes AC invasive behavior toward these cells and further targets invasive processes between the two central 1 degrees vulval lineage cells. We also show that AC invasion is regulated by the AC response to this cue, as well as a vulval-independent mechanism that weakly drives invasion. These studies dissect the regulatory mechanisms that underlie a simple cell-invasive behavior in vivo, and introduce AC invasion as a model for understanding key checkpoints controlling cell invasion.  相似文献   

7.
The outline of cells in sparse cultures consists predominantly of concave and convex segments; straight segments are rare and ephemeral. The convex segments are areas of active cell expansion. The concave segments are stationary and web-shaped, similar in profile to the cables of a suspension bridge. In 3T3 fibroblasts, we have found a single microfilament bundle following the outline of every webbed edge and have called it the actin edge-bundle (AEB). While the AEB is composed predominantly of actin, alpha-actinin and myosin are also present. In contrast to normal stress fibers, AEBs are more resistant to several treatments that depolymerize F-actin. Once an AEB disassembles, however, the webbed edge collapses and retracts, suggesting that the actin edge-bundle is a specialized cytoskeletal structure that supports the webbed edges of interphase 3T3 fibroblasts. The stability of AEBs is independent of microtubules. We suggest that the microfilament bundles that frequently line the lateral contacts between epithelial cells in vivo may be related to the actin edge-bundle.  相似文献   

8.
Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell–cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.  相似文献   

9.
The role of bacterial cell wall hydrophobicity in adhesion   总被引:25,自引:0,他引:25  
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

10.
The role of bacterial cell wall hydrophobicity in adhesion.   总被引:31,自引:18,他引:13       下载免费PDF全文
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

11.
12.
Throughout embryonic development, segregated epithelial and/or mesenchymal cell populations make contact and fuse to shape new tissue units. This process, known as tissue fusion, is a key event in many essential morphogenetic mechanisms and its disruption can lead to congenital malformations. Another mechanism whereby complex tissues can arise involves a cell sorting process in which originally intermixed cells de-mix to generate distinct phases or layers. Different organisms use a combination of tissue fusion and cell sorting to acquire shape. Although the two processes appear to differ mechanistically, they are intricately linked inasmuch as they both involve the same molecular determinants and contribute to the same body plan. We aim to discuss the role of adhesion molecules and cell dynamics in tissue fusion and cell sorting, providing examples of their impact in embryonic development. Finally, we will advance the concept that malignant invasion may be viewed as cell sorting in reverse. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).  相似文献   

13.
Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged “canoe” shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features—cell shape, leading-edge shape, filamentous actin (F-actin) distribution, cell speed, and directional persistence—that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes—which had VASP highly enriched at their leading edges and migrated fast with straight trajectories—to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and behavior phenotypes as large-scale consequences of kinetic contributions of VASP to actin filament growth and protection from capping at the leading edge. This work shows that the local effects of actin-remodeling proteins on cytoskeletal dynamics and organization can manifest as global modifications of the shape and behavior of migrating cells and that mathematical modeling can elucidate these large-scale cell behaviors from knowledge of detailed multiscale protein interactions.  相似文献   

14.
Crawling of eukaryotic cells on flat surfaces is underlain by the protrusion of the actin network, the contractile activity of myosin II motors, and graded adhesion to the substrate regulated by complex biochemical networks. Some crawling cells, such as fish keratocytes, maintain a roughly constant shape and velocity. Here we use moving-boundary simulations to explore four different minimal mechanisms for cell locomotion: 1), a biophysical model for myosin contraction-driven motility; 2), a G-actin transport-limited motility model; 3), a simple model for Rac/Rho-regulated motility; and 4), a model that assumes that microtubule-based transport of vesicles to the leading edge limits the rate of protrusion. We show that all of these models, alone or in combination, are sufficient to produce half-moon steady shapes and movements that are characteristic of keratocytes, suggesting that these mechanisms may serve redundant and complementary roles in driving cell motility. Moving-boundary simulations demonstrate local and global stability of the motile cell shapes and make testable predictions regarding the dependence of shape and speed on mechanical and biochemical parameters. The models shed light on the roles of membrane-mediated area conservation and the coupling of mechanical and biochemical mechanisms in stabilizing motile cells.  相似文献   

15.
The locomotion of human blood neutrophil leucocytes was observed and analysed by time-lapse cinematography (1) under conditions where chemokinetic locomotion was stimulated, i.e. in a uniform concentration of casein; (2) in response to chemotactic gradients generated at a point-like source, namely blastospores of the pathogenic yeast Candida albicans in normal human plasma, and (3) in response to soluble chemotactic factors diffusing from Sephadex beads. Neutrophils moving in purely chemokinetic conditions tended to persist in straight paths and showed a preference for narrow angles of turn suggesting a “persistent random walk” type of locomotion rather than a pure random walk. Cells responding to Candida spores showed near straight-line locomotion to the gradient source over short distances (ca 50 μm) and brief time periods. They phagocytosed the spores on arrival and were usually immediately able to respond to a new gradient. Colchicine treatment caused the cells to turn through wider angles, but they were still able to home onto and phagocytose the spores. Colchicine-treated cells showed bizarre and fluctuating shapes but were nonetheless usually polarized towards the gradient source. Gradients from large sources, such as Sephadex beads containing soluble chemotactic factors, were more easily disturbed than those from Candida spores and directional locomotion of cells towards the beads was only seen in certain sectors. The angles of turn made by moving cells under these conditions were an important determinant of chemotaxis since paths of those cells reaching beads showed longer straight segments and narrower angles of turn than those which failed to show a directional response.  相似文献   

16.
Cell migration is essential for several important biological outcomes and is involved in various developmental disorders and disease states including cancer cell invasiveness and metastasis. A fundamental step in cell migration is the development of a leading edge. By using HeLa carcinoma cells as an initial model system, we uncovered a surprising role for the heat shock protein 70 (Hsp70) and its ability to bind the protein cross-linking enzyme, tissue transglutaminase (tTG), in cancer cell migration. Treatment of HeLa cells with EGF results in the activation of a plasma membrane-associated pool of tTG and its redistribution to the leading edges of these cells, which are essential events for EGF-stimulated HeLa cell migration. However, we then found that the ability of tTG to be localized to the leading edge is dependent on Hsp70. Similarly, the localization of tTG to the leading edges of MDAMB231 breast carcinoma cells, where it also plays an essential role in their migration, has a strict requirement for Hsp70. Treatment of these different cell lines with inhibitors against the ATP hydrolytic activity of Hsp70 prevented tTG from localizing to their leading edges and thereby blocked EGF-stimulated HeLa cell migration, as well as the constitutive migration normally exhibited by MDAMB231 cells. These findings highlight a new and unconventional role for the chaperonin activity of Hsp70 in the localization of a key regulatory protein (tTG) at the leading edges of cancer cells and the important consequences that this holds for their ability to migrate.  相似文献   

17.
Epithelial ovarian cancer (EOC) is the deadliest of the gynecological malignancies, due in part to its clinically occult metastasis. Therefore, understanding the mechanisms governing EOC dissemination and invasion may provide new targets for antimetastatic therapies or new methods for detection of metastatic disease. The cAMP-dependent protein kinase (PKA) is often dysregulated in EOC. Furthermore, PKA activity and subcellular localization by A-kinase anchoring proteins (AKAPs) are important regulators of cytoskeletal dynamics and cell migration. Thus, we sought to study the role of PKA and AKAP function in both EOC cell migration and invasion. Using the plasma membrane-directed PKA biosensor, pmAKAR3, and an improved migration/invasion assay, we show that PKA is activated at the leading edge of migrating SKOV-3 EOC cells, and that inhibition of PKA activity blocks SKOV-3 cell migration. Furthermore, we show that while the PKA activity within the leading edge of these cells is mediated by anchoring of type-II regulatory PKA subunits (RII), inhibition of anchoring of either RI or RII PKA subunits blocks cell migration. Importantly, we also show--for the first time--that PKA activity is up-regulated at the leading edge of SKOV-3 cells during invasion of a three-dimensional extracellular matrix and, as seen for migration, inhibition of either PKA activity or AKAP-mediated PKA anchoring blocks matrix invasion. These data are the first to demonstrate that the invasion of extracellular matrix by cancer cells elicits activation of PKA within the invasive leading edge and that both PKA activity and anchoring are required for matrix invasion. These observations suggest a role for PKA and AKAP activity in EOC metastasis.  相似文献   

18.
A prey's body orientation relative to a predator's approach path may affect risk of fleeing straight ahead. Consequently, prey often turn before fleeing. Relationships among orientation, turn, and escape angles and between these angles and predation risk have not been studied in terrestrial vertebrates and have rarely been studied in the field. Escape angles are expected to lead away from predators and be highly variable to avoid being predictable by predators. Using approach speed as a risk factor, we studied these issues in the zebra‐tailed lizard, Callisaurus draconoides. Lizards fled away from human simulated predators, but most did not flee straight away. Escape angles were variable, as expected under the unpredictability hypothesis, and had modes at nearly straight away (i.e., 0°) and nearly perpendicular to the predator's approach path (90°). The straight away mode suggests maximal distancing from the predator; the other mode suggests maintaining ability to monitor the predator or possibly an influence of habitat features such as obstacles and refuges that differ among directions. Turn angles were larger when orientation was more toward the predator, and escape angles were closer to straight away when turn angles were larger. Turning serves to reach a favorable fleeing direction. When orientation angle was more toward the predator, escape angle was unaffected, suggesting that turn angle compensates completely for increased risk of orientation toward the predator. When approached more rapidly, lizards fled more nearly straight away, as expected under greater predation risk. Turn angles were unrelated to approach speed.  相似文献   

19.
Programmed cell death plays an essential role during Drosophila embryonic development. A stereotypic series of cellular changes occur during apoptosis, most of which are initiated by a caspase cascade that is triggered by a trio of proteins, RPR, HID and GRIM. The final step in apoptosis is engulfment of the cell corpse. To monitor cell engulfment in vivo, we developed a fluorogenic beta-galactosidase substrate that is cleaved by an endogenous, lysosomal beta-galactosidase activity. The pattern of cell engulfment in wild-type embryos correlated well with the known pattern of apoptosis. Surprisingly, the pattern of cell engulfment persisted in apoptosis-deficient embryos. We provide evidence for a caspase-independent engulfment process that affects the majority of cells expected to die in developing Drosophila embryos.  相似文献   

20.
Surface thermodynamics of normal and pathological human granulocytes   总被引:1,自引:0,他引:1  
Surface tensions of normal and pathological granulocytes were determined by (1) adhesion to solid substrates of different surface tensions while suspended in liquid media of different surface tensions, and by (2) measurement of cell-liquid-vapor contact angles obtained with sessile drops of saline water on cell monolayers. The results obtained by the two different methods were in close conformation with one another. With the cell adhesion emthod some residual leukocyte adhesion still persists even under conditions where there no longer is a van der Waals attraction between cells and solid substrate. At low ionic strength and by the abolishment of all multivalent cations through the admixture of EDTA, that residual cell adhesion virtually disappears (with normal as well as with pathological granulocytes), indicating that the earlier residual cell adhesion did indeed arise from electrostatic interactions mediated by multivalent cations (probably Ca2+). Comparison of the capacities for engulfment and the surface thermodynamics data of normal and pathological granulocytes obtained in this study leads to the novel observation that the phagocytic episode from half to complete engulfment of bacterial particles by granulocytes appears to be the crucial step from the thermodynamic point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号