共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of a red blood cell (RBC) to deformation depends on its membrane, a composite of a lipid bilayer and a skeleton,
which is a closed, twodimensional network of spectrin tetramers as its bonds. The deformation of the skeleton and its lateral
redistribution are studied in terms of the RBC resting state for a fixed geometry of the RBC, partially aspirated into a micropipette.
The geometry of the RBC skeleton in its initial state is taken to be either two concentric circles, a references biconcave
shape or a sphere. It is assumed that in its initial state the skeleton is distributed laterally in a homogeneous manner with
its bonds either unstressed, presenting its stress-free state, or prestressed. The lateral distribution was calculated using
a variational calculation. It was assumed that the spectrin tetramer bonds exhibit a linear elasticity. The results showed
a significant effect of the initial skeleton geometry on its lateral distribution in the deformed state. The proposed model
is used to analyze the measurements of skeleton extension ratios by the method of applying two modes of RBC micropipette aspiration. 相似文献
2.
Interaction of calmodulin with the red cell and its membrane skeleton and with spectrin 总被引:1,自引:0,他引:1
The binding of calmodulin to red cell membrane cytoskeletons and to purified spectrin from red cells and bovine brain spectrin (fodrin) has been examined. Under physiological solvent conditions binding can be measured by ultracentrifugal pelleting assays. The membrane cytoskeletons contained a single class of binding sites, with a concentration similar to that of spectrin dimers and an association constant of 1.5 X 10(5) M-1. Binding is calcium dependent and is suppressed by the calmodulin inhibitor trifluoperazine. The binding showed a marked dependence on ionic strength, with a maximum at 0.05 M, and a steep dependence on pH, with a maximum at pH 6.5. It was unaffected by 5 mM magnesium. An azidocalmodulin derivative, under the conditions of our experiments, did not label the spectrin-containing complex, although it could be used to demonstrate binding to fodrin. Binding of calmodulin to spectrin tetramers and fodrin in solution could be demonstrated by a pelleting assay after addition of F-actin. Calculations (which are necessarily rough) suggest that at the free calcium concentration prevailing in a normal red cell about 1 in 20 of the calmodulin binding sites in spectrin will be occupied; this proportion will rise rapidly with increasing intracellular calcium. To determine whether inhibition of calmodulin binding to red cell proteins disturbs the control of cell shape, as has been suggested, calcium ions were removed from the cell by addition of an ionophore and of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to the external medium. This did not affect the discoid shape. Trifluoperazine still induced stomatocytosis, exactly as in untreated cells.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
An elastic network model based on the structure of the red blood cell membrane skeleton. 总被引:4,自引:0,他引:4
A finite element network model has been developed to predict the macroscopic elastic shear modulus and the area expansion modulus of the red blood cell (RBC) membrane skeleton on the basis of its microstructure. The topological organization of connections between spectrin molecules is represented by the edges of a random Delaunay triangulation, and the elasticity of an individual spectrin molecule is represented by the spring constant, K, for a linear spring element. The model network is subjected to deformations by prescribing nodal displacements on the boundary. The positions of internal nodes are computed by the finite element program. The average response of the network is used to compute the shear modulus (mu) and area expansion modulus (kappa) for the corresponding effective continuum. For networks with a moderate degree of randomness, this model predicts mu/K = 0.45 and kappa/K = 0.90 in small deformations. These results are consistent with previous computational models and experimental estimates of the ratio mu/kappa. This model also predicts that the elastic moduli vary by 20% or more in networks with varying degrees of randomness. In large deformations, mu increases as a cubic function of the extension ratio lambda 1, with mu/K = 0.62 when lambda 1 = 1.5. 相似文献
4.
Conformation and elasticity of the isolated red blood cell membrane skeleton. 总被引:2,自引:0,他引:2
下载免费PDF全文

We studied the structure and elasticity of membrane skeletons from human red blood cells (RBCs) during and after extraction of RBC ghosts with nonionic detergent. Optical tweezers were used to suspend individual cells inside a flow chamber, away from all surfaces; this procedure allowed complete exchange of medium while the low-contrast protein network of the skeleton was observed by high resolution, video-enhanced differential interference-contrast (DIC) microscopy. Immediately following extraction in a 5 mM salt buffer, skeletons assumed expanded, nearly spherical shapes that were uncorrelated with the shapes of their parent RBCs. Judging by the extent of thermal undulations and by their deformability in small flow fields, the bending rigidity of skeletons was markedly lower than that of either RBCs or ghosts. No further changes were apparent in skeletons maintained in this buffer for up to 40 min at low temperatures (T less than 10 degrees C), but skeletons shrank when the ionic strength of the buffer was increased. When the salt concentration was raised to 1.5 M, shrinkage remained reversible for approximately 1 min but thereafter became irreversible. When maintained in 1.5 M salt buffer for longer periods, skeletons continued to shrink, lost flexibility, and assumed irregular shapes: this rigidification was irreversible. At this stage, skeletons closely resembled those isolated in standard bulk preparations. We propose that the transformation to the rigid, irreversibly shrunken state is a consequence of spectrin dimer-dimer reconnections and that these structural rearrangements are thermally activated. We also measured the salt-dependent size of fresh and bulk extracted skeletons. Our measurements suggest that, in situ, the spectrin tethers are flexible, with a persistence length of approximately 10 nm at 150 mM salt. 相似文献
5.
I Birlouez-Aragon P Scalbert-Menanteau M Morawiec M Shafiezadeh 《Biochemical and biophysical research communications》1990,170(3):1107-1113
This study examines the relationship between protein glycation and membrane fluidity in RBC membranes. Incubation of RBC membranes of healthy subjects with 25mM glucose or galactose at 37 degrees C induced a 38% (p less than 0.02) increase in protein glycation (using furosine determination by HPLC) and higher fluidity (p less than 0.05) in DPH polarization ratio). However, incubation of RBC membranes from diabetic subjects under the same conditions did not modify either membrane fluidity or protein glycation; protein glycation was above normal before incubation because of the high diabetic plasma glucose. There was no difference in the membrane fluidities of 21 healthy subjects and 32 diabetic subjects, despite a significantly elevated protein glycation in diabetics. Furthermore, there was no change with respect to age in either population. We conclude that other in vivo factors, such as membrane lipid changes (increase in CL/PL ratio) or formation of advanced Maillard products and peroxidation in the diabetic subjects, could be responsible for the difference between these in vitro results and the in vivo situation. 相似文献
6.
Influence of network topology on the elasticity of the red blood cell membrane skeleton. 总被引:2,自引:2,他引:2
下载免费PDF全文

A finite-element network model is used to investigate the influence of the topology of the red blood cell membrane skeleton on its macroscopic mechanical properties. Network topology is characterized by the number of spectrin oligomers per actin junction (phi a) and the number of spectrin dimers per self-association junction (phi s). If it is assumed that all associated spectrin is in tetrameric form, with six tetramers per actin junction (i.e., phi a = 6.0 and phi s = 2.0), then the topology of the skeleton may be modeled by a random Delaunay triangular network. Recent images of the RBC membrane skeleton suggest that the values for these topological parameters are in the range of 4.2 < phi a < 5.5 and 2.1 < phi s < 2.3. Model networks that simulate these realistic topologies exhibit values of the shear modulus that vary by more than an order of magnitude relative to triangular networks. This indicates that networks with relatively sparse nontriangular topologies may be needed to model the RBC membrane skeleton accurately. The model is also used to simulate skeletal alterations associated with hereditary spherocytosis and Southeast Asian ovalocytosis. 相似文献
7.
R E Waugh 《Biophysical journal》1996,70(2):1027-1035
Model calculations were performed to explore quantitative aspects of the discocyte-echinocyte shape transformation in red blood cells. The shape transformation was assumed to be driven by changes in the preferred curvature of the membrane bilayer and opposed by the elastic shear rigidity of the membrane skeleton. The energy required for echinocyte bump formation was calculated for a range of bump shapes for different preferred curvatures. Energy minima corresponding to nonzero bump heights were found when the stress-free area difference between the membrane leaflets or the spontaneous curvature of the membrane became sufficiently large, but the calculations predict that the membrane can tolerate significant differences in the resting areas of the inner and outer leaflets or significant spontaneous curvature without visible changes in shape. Thus, if the cell is near the threshold for bump formation, the calculations predict that small changes in membrane properties would produce large changes in cellular geometry. These results provide a rational framework for interpreting observations of shape transformations in red cells and for understanding the mechanism by which small changes in membrane elastic properties might lead to significant changes in geometry. 相似文献
8.
Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. 总被引:3,自引:6,他引:3
下载免费PDF全文

E A Evans 《Biophysical journal》1980,30(2):265-284
An experimental procedure is demonstrated which can be used to determine the interfacial free energy density for red cell membrane adhesion and membrane elastic properties. The experiment involves micropipet aspiration of a flaccid red blood cell and manipulation of the cell proximal to a surface where adhesion occurs. A minimum free energy method is developed to model the equilibrium contour of unsupported membrane regions and to evaluate the partial derivatives of the total free energy, which correspond to the micropipet suction force and the interfacial free energy density of adhesion. It is shown that the bending elasticity of the red cell membrane does not contribute significantly to the pressure required to aspirate a flaccid red cell. Based on experimental evidence, the upper bound for the bending or curvature elastic modulus of the red cell membranes is 10-12 ergs (dyn-cm). Analysis of the adhesion experiment shows that interfacial free energy densities for red cell adhesion can be measured from a lower limit of 10-4 ergs/cm2 to an upper limit established by the membrane tension for lysis of 5-10 ergs/cm2. 相似文献
9.
Martin Baumann 《Molecular membrane biology》2013,30(2):149-153
The influence of the membrane skeleton on cell membrane deformability, elasticity, and rupture after repetitive cycles of membrane strain, release and rupture was investigated. Human red blood cells were electrofused to doublets, which showed the post-fusion oscillation-movement. Geometrical developments of heat-treated cells were measured and compared to control cells. Alterations of cluster length and fusion zone diameter during repetitive colloidosmotic swelling period grow with heat treatment, and the number of precedent swell phases has minor influence on these values. Irrespective of the treatment, the geometrical doublet configuration at which a membrane rupture is initiated has an almost constant roundness index of 0.89. Increasing heat treatment temperature was shown to affect both deformability and elasticity of the membrane, such that doublets start each swell phase of the oscillation cycle from decreased roundness values. Evidence is given that there is a difference in the mechanical properties between the membrane at the fusion zone and the membrane of native red blood cells. 相似文献
10.
Baumann M 《Molecular membrane biology》2002,19(2):149-153
The influence of the membrane skeleton on cell membrane deformability, elasticity, and rupture after repetitive cycles of membrane strain, release and rupture was investigated. Human red blood cells were electrofused to doublets, which showed the post-fusion oscillation-movement. Geometrical developments of heat-treated cells were measured and compared to control cells. Alterations of cluster length and fusion zone diameter during repetitive colloidosmotic swelling period grow with heat treatment, and the number of precedent swell phases has minor influence on these values. Irrespective of the treatment, the geometrical doublet configuration at which a membrane rupture is initiated has an almost constant roundness index of 0.89. Increasing heat treatment temperature was shown to affect both deformability and elasticity of the membrane, such that doublets start each swell phase of the oscillation cycle from decreased roundness values. Evidence is given that there is a difference in the mechanical properties between the membrane at the fusion zone and the membrane of native red blood cells. 相似文献
11.
Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding.
下载免费PDF全文

To assess local elasticity in the red cell's spectrin-actin network, nano-particles were tethered to actin nodes and their constrained thermal motions were tracked. Cells were both immobilized and controllably deformed by aspiration into a micropipette. Since the network is well-appreciated as soft, thermal fluctuations even in an unstressed portion of network were expected to be many tens of nanometers based on simple equipartition ideas. Real-time particle tracking indeed reveals such root-mean-squared motions for 40-nm fluorescent beads either tethered to actin directly within a cell ghost or connected to actin from outside a cell via glycophorin. Moreover, the elastically constrained displacements are significant on the scale of the network's internodal distance of approximately 60-80 nm. Surprisingly, along the aspirated projection-where the network is axially extended by as much as twofold or more-fluctuations in the axial direction are increased by almost twofold relative to motions in the unstressed network. The molecular basis for such strain softening is discussed broadly in terms of force-driven transitions. Specific considerations are given to 1) protein dissociations that reduce network connectivity, and 2) unfolding kinetics of a localized few of the red cell's approximately 10(7) spectrin repeats. 相似文献
12.
Effects of intracellular Ca2+ and proteolytic digestion of the membrane skeleton on the mechanical properties of the red blood cell membrane 总被引:4,自引:0,他引:4
M Shields P La Celle R E Waugh M Scholz R Peters H Passow 《Biochimica et biophysica acta》1987,905(1):181-194
Intracellular Ca2+ at concentrations ranging from 0 to 10 mumol/l increases the shear modulus of surface elasticity (mu) and the surface viscosity (eta) of human red blood cells by 20% and 70%, respectively. K+ selective channels in the red cell membrane become activated by Ca2+. The activation still occurs to the same extent when the membrane skeleton is degraded by incorporation of trypsin into resealed red cell ghosts, suggesting that the channel activation is not controlled by the proteins of the membrane skeleton and is independent of mu and eta. Incorporation of trypsin at concentrations ranging from 0 to 100 ng/ml into red cell ghosts leads to a graded digestion of spectrin, a cleavage of the band 3 protein and a release of the binding proteins ankyrin and band 4.1. These alterations are accompanied by an increase of the lateral mobility of the band 3 protein which, at 40 ng/ml trypsin, reaches a plateau value where the rate of lateral diffusion is enhanced by about two orders of magnitude above the rate measured in controls without trypsin. Proteolytic digestion by 10-20 ng/ml trypsin leads to a degradation of more than 40% of the spectrin and increases the rate of lateral diffusion to about 20-70% of the value observed at the plateau. Nevertheless, mu and eta remain virtually unaltered. However, the stability of the membrane is decreased to the point where a slight mechanical extension, or the shear produced by centrifugation results in disintegration and vesiculation, precluding measurements of eta and mu in ghosts treated with higher concentrations of trypsin. These findings indicate that alterations of the structural integrity of the membrane skeleton exert drastically different effects on mu and eta on the one hand and on the stability of the membrane on the other. 相似文献
13.
The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell
下载免费PDF全文

The deformation of an initially spherical vesicle of radius a with a permeable membrane under extensive forces applied at its poles is calculated as a function of the in-plane shear modulus, H, and the out-of-plane bending modulus, B, using an axisymmetric theory that is valid for large deformations. Suitably nondimensionalized, the results depend upon a single nondimensional parameter, C identical with a(2)H/B. For small deformations, the calculated force-polar strain curves are linear and, under these conditions, the slope of the curve determines only C, not the values of H and B separately. Independent determination of H and B from experimental measurements require deformations that are large enough to produce nonlinear behavior. Simple approximations for large and small C are given, which are applied to experimental measurements on red blood cell ghosts that have been made permeable by treatment with saponin. 相似文献
14.
Tether formation, which is mechanically characterized by its threshold force and effective viscosity, is involved in neutrophil emigration from blood circulation. Using the micropipette aspiration technique, which was improved by quantitative contact control and computerized data analysis, we extracted tethers from human neutrophils treated with IL-8, PMA, or cytochalasin D. We found that both IL-8 and PMA elevated the threshold force to about twice as large as the value for passive neutrophils. All these treatments decreased the effective viscosity dramatically (approximately 80%). With a novel method, the residual cortical tension of the cytochalasin-D-treated non-spherical neutrophils was measured to be approximately 8.8 pN/microm. 相似文献
15.
A new theory of transport for cell membrane pores. I. General theory and application to red cell 总被引:7,自引:0,他引:7
D G Levitt 《Biochimica et biophysica acta》1974,373(1):115-131
16.
The relationship between anion exchange and net anion flow across the human red blood cell membrane 总被引:8,自引:9,他引:8
下载免费PDF全文

P A Knauf G F Fuhrmann S Rothstein A Rothstein 《The Journal of general physiology》1977,69(3):363-386
The conductive (net) anion permeability of human red blood cells was determined from net KCl or K2SO4 effluxes into low K+ media at high valinomycin concentrations, conditions under which the salt efflux is limited primarily by the net anion permeability. Disulfonic stilbenes, inhibitors of anion exchange, also inhibited KCl or K2SO4 efflux under these conditions, but were less effective at lower valinomycin concentrations where K+ permeability is the primary limiting factor. Various concentrations of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) had similar inhibitory effects on net and exchange sulfate fluxes, both of which were almost completely DIDS sensitive. In the case of Cl-, a high correlation was also found between inhibition of net and exchange fluxes, but in this case about 35% of the net flux was insensitive to DIDS. The net and exchange transport processes differed strikingly in their anion selectivity. Net chloride permeability was only four times as high as net sulfate permeability, whereas chloride exchange is over 10,000 times faster than sulfate exchange. Net OH-permeability, determined by an analogous method, was over four orders of magnitude larger than that of Cl-, but was also sensitive to DIDS. These data and others are discussed in terms of the possibility that a common element may be involved in both net and exchange anion transport. 相似文献
17.
Background
Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC) metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed. This prototype model consists of three major metabolic pathways, namely, the glycolytic pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Like the previous model by Joshi and Palsson, it also models physical effects such as osmotic balance. This model was used here to reconstruct the pathology arising from hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is the most common deficiency in human RBC. 相似文献18.
Application of external electric field to cell suspension maintained at ice temperature induces pores in the cell membrane. At this stage, a drug added to the cell suspension equilibrates across the membrane. On raising the temperature to 37 degrees C, the pores appear to be sealed as the drug is retained in the cells. This method was used for encapsulation of Co-57 labelled cynocobalamin in rabbit erythrocytes. It was seen from the in vivo biokinetic study of the drug-loaded erythrocytes that the rate of elimination of the drug was considerably reduced as compared to that of the free drug, indicating that drug delivery by electroencapsulation can give a sustained release of the drug. 相似文献
19.
We are investigating the use of liposomes, which are synthetic, microscopic vesicles, for the intracellular delivery of trehalose into mammalian cells. This study focuses on the effects trehalose-containing liposomes improve the recovery and membrane quality of human RBCs following cryopreservation. Unilamellar liposomes consisting of a lipid bilayer composed of DPPC, PS and cholesterol (60:30:10 mol%) were synthesized using an extrusion method. Liposome-treated RBCs (l-RBCs) were resuspended in either physiological saline, 0.3 M trehalose or liposome solution, then cooled with slow (0.95 ± 0.02 °C/min), medium (73 ± 3 °C/min) and fast (265 ± 12 °C/min) cooling rates and storage in liquid nitrogen, followed by a 37 °C thawing step. RBC post-thaw quality was assessed using percent recovery, RBC morphology, PS and CD47 expression. Liposome treatment did not adversely affect the RBC membrane. Post-thaw recovery of l-RBCs was significantly higher (66% ± 5% vs 29% ± 4%) compared to control RBCs (c-RBC, p = 0.003). Medium and high cooling rates resulted in significantly higher cell recovery compared to a slow cooling rate (p = 0.039 and p = 0.041, respectively). The recovery of l-RBCs frozen in liposome solution and trehalose solution was significantly higher than that of l-RBCs frozen in NaCl solution for all three cooling rates (p = 0.021). Flow cytometry and morphology assessment showed that liposome treatment resulted in improved post-thaw membrane quality. There was no statistically significant difference in the post-thaw recovery between RBCs treated with liposomes containing trehalose in their aqueous core and RBCs treated with liposomes containing saline in their aqueous core (p = 0.114). Liposome treatment significantly improves the recovery and membrane integrity of RBCs following low temperature exposure. 相似文献