首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterising the mechanisms causing viscoelastic mechanical properties of human cortical bone, as well as understanding sources of variation, is important in predicting response of the bone to creep and fatigue loads. Any better understanding, when incorporated into simulations including finite element analysis, would assist bioengineers, clinicians and biomedical scientists. In this study, we used an empirically verified model of creep strain accumulation, in a simulation of 10 non-homogeneous samples, which were created from micro-CT scans of human cortical bone of the femur midshaft obtained from a 74-year-old female cadaver. These non-homogeneous samples incorporate the presence of Haversian canals and resorption cavities. The influence of inhomogeneity on the response and variation in the samples in both creep and stress relaxation tests are examined. The relationship between steady-state creep rate, applied loads (stress relaxation and creep tests) and microstructure, that is bone apparent porosity, is obtained. These relations may provide insight into damage accumulation of whole human bones and be relevant to studies on osteoporosis.  相似文献   

2.
Characterising the mechanisms causing viscoelastic mechanical properties of human cortical bone, as well as understanding sources of variation, is important in predicting response of the bone to creep and fatigue loads. Any better understanding, when incorporated into simulations including finite element analysis, would assist bioengineers, clinicians and biomedical scientists. In this study, we used an empirically verified model of creep strain accumulation, in a simulation of 10 non-homogeneous samples, which were created from micro-CT scans of human cortical bone of the femur midshaft obtained from a 74-year-old female cadaver. These non-homogeneous samples incorporate the presence of Haversian canals and resorption cavities. The influence of inhomogeneity on the response and variation in the samples in both creep and stress relaxation tests are examined. The relationship between steady-state creep rate, applied loads (stress relaxation and creep tests) and microstructure, that is bone apparent porosity, is obtained. These relations may provide insight into damage accumulation of whole human bones and be relevant to studies on osteoporosis.  相似文献   

3.
A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data.  相似文献   

4.
Subject-specific finite element models are an extensively used tool for the numerical analysis of the biomechanical behaviour of human bones. However, bone modelling is not an easy task due to the complex behaviour of bone tissue, involving non-homogeneous and anisotropic mechanical properties. Moreover, bone is a living tissue and therefore its microstructure and mechanical properties evolve with time in a known process called bone remodelling. This phenomenon has been widely studied, many being the numerical models that have been formulated to predict density distribution and its evolution in several bones. The aim of the present study is to assess the capability of a bone remodelling model to predict the bone density distribution of different types of human bone (femur, tibia and mandible) comparing the obtained results with the bone density estimated by means of computerised tomography. Good accuracy was observed for the bone remodelling predictions including the thickness of the cortical layer.  相似文献   

5.
Bone is a dynamic tissue which, through the process of bone remodeling in the mature skeleton, renews itself during normal function and adapts to mechanical loads. It is, therefore, important to understand the effect of remodeling on the mechanical function of bone, as well as the effect of the inherent time lag in the remodeling process. In this study, we develop a constitutive model for bone remodeling which includes a number of relevant mechanical and biological processes and use this model to address differences in the remodeling behavior as a volume element of bone is placed in disuse or overload. The remodeling parameters exhibited damped oscillatory behavior as the element was placed in disuse, with the amplitude of the oscillations increasing as the severity of disuse increased. In overload situations, the remodeling parameters exhibited critically sensitive behavior for loads beyond a threshold value. These results bear some correspondence to experimental findings, suggesting that the model may be useful when examining the importance of transient responses for bone in disuse, and for investigating the role fatigue damage removal plays in preventing or causing stress fractures. In addition, the constitutive algorithm is currently being employed in finite element simulations of bone adaptation to predict important features of the internal structure of the normal femur, as well as to study bone diseases and their treatment.  相似文献   

6.
Bone is able to adapt itself to the mechanical and biological environment by changing its porosity and/or orientation of its internal microstructure in a process known as bone remodelling. As a consequence, a change of bone mechanical properties is produced leading to an optimum structure, able to bear the external loads with the minimum weight. This adaptation is carried out by a temporal association of cells known as BMUs (basic multicellular units) that resorb old bone and sometimes produce new organic extracellular matrix (osteoid) that is later mineralized. This involves changes in porosity, damage level (density of microcracks accumulated by cyclic loads) and mineral content. All of these features were taken into account in a previous model, but the whole process and therefore the resulting bone constitutive behaviour was considered isotropic. The model proposed herein, recognizing that bone is actually anisotropic, tries to explain how BMUs modify the anisotropy by changing their progressing direction. We check the potential of the model to predict the alignment of the bone microstructure with the external loads in different situations. Then, the model is also applied to obtain the anisotropy and mechanical properties of the human proximal femur under physiological loads with initial conditions corresponding to a heterogeneous, but otherwise isotropic bone.  相似文献   

7.
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.  相似文献   

8.
A feedback controlled loading apparatus for the rat tail vertebra was developed to deliver precise mechanical loads to the eighth caudal vertebra (C8) via pins inserted into adjacent vertebrae. Cortical bone strains were recorded using strain gages while subjecting the C8 in four cadaveric rats to mechanical loads ranging from 25 to 100 N at 1 Hz with a sinusoidal waveform. Finite element (FE) models, based on micro computed tomography, were constructed for all four C8 for calculations of cortical and trabecular bone tissue strains. The cortical bone strains predicted by FE models agreed with strain gage measurements, thus validating the FE models. The average measured cortical bone strain during 25-100 N loading was between 298 +/- 105 and 1210 +/- 297 microstrain (muepsilon). The models predicted average trabecular bone tissue strains ranging between 135 +/- 35 and 538 +/- 138 mu epsilon in the proximal region, 77 +/- 23-307 +/- 91 muepsilon in the central region, and 155 +/- 36-621 +/- 143 muepsilon in the distal region for 25-100 N loading range. Although these average strains were compressive, it is also interesting that the trabecular bone tissue strain can range from compressive to tensile strains (-1994 to 380 mu epsilon for a 100 N load). With this novel approach that combines an animal model with computational techniques, it could be possible to establish a quantitative relationship between the microscopic stress/strain environment in trabecular bone tissue, and the biosynthetic response and gene expression of bone cells, thereby study bone adaptation.  相似文献   

9.
Trabecular bone adaptation with an orthotropic material model.   总被引:3,自引:0,他引:3  
Most bone adaptation algorithms, that attempt to explain the connection between bone morphology and loads, assume that bone is effectively isotropic. An isotropic material model can explain the bone density distribution, but not the structure and pattern of trabecular bone, which clearly has a mechanical significance. In this paper, an orthotropic material model is utilized to predict the proximal femur trabecular structure. Two hypotheses are combined to determine the local orientation and material properties of each element in the model. First, it is suggested that trabecular directions, which correspond to the orthotropic material axes, are determined locally by the maximal principal stress directions due to the multiple load cases (MLC) the femur is subject to. The second hypothesis is that material properties in each material direction can be determined using directional stimuli, thus extending existing adaptation algorithms to include directionality. An algorithm is utilized, where each iteration comprises of two stages. First, material axes are rotated to the direction of the largest principal stress that occurs from a multiple load scheme applied to the proximal femur. Next, material properties are modified in each material direction, according to a directional stimulus. Results show that local material directions correspond with known trabecular patterns, reproducing all main groups of trabeculae very well. The local directional stiffnesses, degree of anisotropy and density distribution are shown to conform to real femur morphology.  相似文献   

10.
To facilitate the investigation of bone formation, in vivo, in response to mechanical loading a caudal vertebra axial compression device (CVAD) has been developed to deliver precise mechanical loads to the fifth caudal vertebra (C5) of the C57BL/6 female mouse. A combined experimental and computational approach was used to quantify the micro-mechanical strain induced in trabecular and cortical components following static and dynamic loading using the CVAD. Cortical bone strains were recorded using micro-strain gages. Finite element (FE) models based on micro-computed tomography were constructed for all C5 vertebrae. Both theoretical and experimental cortical strains correlated extremely well (R(2)>0.96) for a Young's modulus of 14.8 GPa, thus validating the FE model. In this study, we have successfully applied mechanical loads to the C5 murine vertebrae, demonstrating the potential of this model to be used for in vivo loading studies aimed at stimulating both trabecular and cortical bone adaptation.  相似文献   

11.
12.
Theories of mechanical adaptation of bone suggest that mechanical loading causes bone formation at discrete locations within bone microstructure experiencing the greatest mechanical stress/strain. Experimental testing of such theories requires in vivo loading experiments and high-resolution finite element models to determine the distribution of mechanical stresses. Finite element models of in vivo loading experiments typically assume idealized boundary conditions with applied load perfectly oriented on the bone, however small misalignments in load orientation during an in vivo experiment are unavoidable, and potentially confound the ability of finite element models to predict locations of bone formation at the scale of micrometers. Here we demonstrate two different three-dimensional spatial correlation methods to determine the effects of misalignment in load orientation on the locations of high mechanical stress/strain in the rodent tail loading model. We find that, in cancellous bone, the locations of tissue with high stress are maintained under reasonable misalignments in load orientation (p<0.01). In cortical bone, however, angular misalignments in the dorsal direction can alter the locations of high mechanical stress, but the locations of tissue with high stress are maintained under other misalignments (p<0.01). We conclude that, when using finite element models of the rodent tail loading model, small misalignments in loading orientation do not affect the predicted locations of high mechanical stress within cancellous bone.  相似文献   

13.
There are substantial changes in skeletal and mineral metabolism during pregnancy and lactation. The purpose of this study was to determine the changes in intracortical bone remodeling and turnover during lactation in beagle dogs. A femur and rib were obtained from dogs near the end of lactation or soon after weaning and compared with nonlactating controls. Rib cortical bone had much higher bone turnover rates than did femoral diaphyseal cortical bone. The number of single-labeled osteons and the number of resorption spaces were significantly greater during lactation in both the rib and the femur. Additionally, the mineral apposition rate, basic multicellular unit activation frequency, and bone turnover rates were greater in the femoral cortical bone from the lactating dogs than from the controls. These data demonstrate that during lactation, intracortical bone remodeling increases, and this may provide a mechanism for the skeleton to be responsive to the calcium requirements of the mother. In addition, these data may help explain the transient decreases in cortical bone mineral density that are reported to occur during human lactation.  相似文献   

14.
In this work, a complete internal-external bone-remodelling scheme is presented and implemented into a finite element code. This model uses a combination of an anisotropic internal remodelling model based on a new Continuum "Damage-Repair" theory and an external adaptation approach that follows the idea, early introduced by Mattheck et al., to simulate the growth behaviour of biological systems, known as CAO method. This combined scheme qualitatively resembles most of the main features of the bone adaptive behaviour, like the bone mass distribution (heterogeneity and porosity), the directional internal structure (anisotropy), the alignment of the microstructure with the constitutive principal directions and these with those of the stress tensor when permanently loaded by a unique stress state (Wolff's law). It is also thermodynamically consistent, fulfilling a principle of minimum mechanical dissipation. Finally, the comparison between the predicted results and the ones obtained by different experimental tests allows us to conclude that this model is able of reproducing qualitatively the global behaviour of bone tissue when subjected to external mechanical loads.  相似文献   

15.
The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes – produced by age, microgravity, or some diseases – on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone?s microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined.  相似文献   

16.
Two-dimensional simulation of trabecular surface remodeling was conducted for a human proximal femur to investigate the structural change of cancellous bone toward a uniform stress state. Considering that a local mechanical stimulus plays an important role in cellular activities in bone remodeling, local stress nonuniformity was assumed to drive trabecular structural change to seek a uniform stress state. A large-scale pixel-based finite element model was used to simulate structural changes of individual trabeculae over the entire bone. As a result, the initial structure of trabeculae changed from isotropic to anisotropic due to trabecular microstructural changes caused by surface remodeling according to the mechanical environment in the proximal femur. Under a single-loading condition, it was shown that the apparent structural property evaluated by fabric ellipses corresponded to the apparent stress state in cancellous bone. As is observed in the actual bone, a distributed trabecular structure was obtained under a multiple-loading condition. Through these studies, it was concluded that trabecular surface remodeling toward a local uniform stress state at the trabecular level could naturally bring about functional adaptation phenomenon at the apparent tissue level. The proposed simulation model would be capable of providing insight into the hierarchical mechanism of trabecular surface remodeling at the microstructural level up to the apparent tissue level.  相似文献   

17.
In this study, we developed a numerical framework that computationally determines simultaneous and interactive structural changes of cortical and trabecular bone types during bone remodeling, and we investigated the structural correlation between the two bone types in human proximal femur. We implemented a surface remodeling technique that performs bone remodeling in the exterior layer of the cortical bone while keeping its interior area unchanged. A micro-finite element (μFE) model was constructed that represents the entire cortical bone and full trabecular architecture in human proximal femur. This study simulated and compared the bone adaptation processes of two different structures: (1) femoral bone that has normal cortical bone shape and (2) perturbed femoral bone that has an artificial bone lump in the inferomedial cortex. Using the proposed numerical method in conjunction with design space optimization, we successfully obtained numerical results that resemble actual human proximal femur. The results revealed that actual cortical bone, as well as the trabecular bone, in human proximal femur has structurally optimal shapes, and it was also shown that a bone abnormality that has little contribution to bone structural integrity tends to disappear. This study also quantitatively determined the structural contribution of each bone: when the trabecular adaptation was complete, the trabecular bone supported 54% of the total load in the human proximal femur while the cortical bone carried 46%.  相似文献   

18.
A finite-element micromechanics model for Haversian cortical bone tissue has been developed and studied. The model is an extension of two-dimensional micromechanics techniques for fiber-reinforced composite materials. Haversian systems, or secondary osteons, are considered to be the fiber component, and interstitial lamellar bone the matrix material. The cement line is included as an 'interphase' component along the fiber/matrix interface. The model assumes a regular repeatable spacing of the longitudinally aligned continuous fibers and is, therefore, restricted to approximating Haversian cortical bone in its present form. Haversian porosity is modeled explicitly by incorporating a hollow fiber to represent the Haversian canal. Solutions have been obtained by applying uniform macroscopic stresses to the boundaries of the repeating unit cell model. Macroscopic mechanical property predictions correspond reasonably well with the experimental data for cortical bone, but are necessarily dependent on the input properties for each constituent, which are not well established. The predicted variation in the elastic modulus with porosity is not as sensitive as that observed experimentally. Stresses within the constituents can also be modeled with this method and are demonstrated to deviate from the macroscopic applied stress levels.  相似文献   

19.
Bone remodelling is a fundamental biological process that controls bone microrepair, adaptation to environmental loads and calcium regulation among other important processes. It is not surprising that bone remodelling has been subject of intensive both experimental and theoretical research. In particular, many mathematical models have been developed in the last decades focusing in particular aspects of this complicated phenomenon where mechanics, biochemistry and cell processes strongly interact. In this paper, we present a new model that combines most of these essential aspects in bone remodelling with especial focus on the effect of the mechanical environment into the biochemical control of bone adaptation mainly associated to the well known RANKL-RANK-OPG pathway. The predicted results show a good correspondence with experimental and clinical findings. For example, our results indicate that trabecular bone is more severely affected both in disuse and disease than cortical bone what has been observed in osteoporotic bones. In future, the methodology proposed would help to new therapeutic strategies following the evolution of bone tissue distribution in osteoporotic patients.  相似文献   

20.
Castration of male rats leads to increased bone turnover and osteopenia. This study was conducted to examine the effects of the aminobisphosphonate alendronate on castration-induced bone changes. Bisphosphonates are drugs that inhibit bone turnover by decreasing the resorption. Since they suppress bone remodeling, they may also prevent the repair of microdamage and decrease bone strength. Although the mechanical properties of bones are directly related to the determination of fracture risk, bisphosphonate effects on the related variables have scarcely been investigated. Twenty-four male Wistar rats at two months of age were castrated or sham-operated to evaluate the effects of long-term administration (six months) of sodium alendronate at a dose of 1 mg/kg/day. The bones were tested mechanically by a three-point bending test in a Mini Bionix (MTS) testing system. High bone remodeling seen in castrated rats expressed by increased TrACP and B-ALP was suppressed by alendronate administration. Bone from castrated rats was characterized by a reduction in bone density as well as ash, calcium and phosphate content. Castration significantly altered mechanical properties of bone and femoral cortical thickness. When castrated rats were treated with high dose of alendronate, the changes in bone density resulting from castration were entirely prevented, and mechanical analysis revealed preserved mechanical strength of femur and cortical thickness. We conclude that castration induces cortical bone loss associated with high bone turnover in the male rat, and this bone loss can be prevented by alendronate through the inhibition of osteoclastic activity, while preserving the mechanical properties of bone. These results document the efficacy of alendronate, even at high doses, in preventing bone loss, loss of bone mechanical strength, and the rise in biochemical bone turnover indicators due to castration in rats, and raises the possibility that a alendronate could be equally effective in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号