首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The F18 fimbriae expressed by porcine toxigenic Escherichia coli strains are 1- to 2-mm-long filaments that mediate the adhesion of the bacteria to enterocytes. The backbone of these fimbriae is built from a major structural 15.1-kDa protein, FedA. The structure of isolated negatively stained F18 fimbriae imaged by dark-field scanning transmission electron microscopy (STEM) was resolved to approximately 2 nm. Analyzing their helical symmetry showed the axially repeating units to alternate in a "zigzag" manner around the helical axis with an axial rise of 2.2 nm. Two repeating units give rise to the observed 4.3-nm helical repeat, which is practically identical to the pitch of the one-start helix formed. Additionally, an axially repeating pattern with a 27-nm spacing was found on rotary-shadowed fimbriae. Mass-per-length determination of unstained F18 fimbriae by STEM revealed the axially repeating unit to have a molecular mass of 25.4 kDa, indicating that it is a FedA monomer, with the difference in mass arising from the minor subunits, FedE and FedF. The presence of the latter two proteins might cause the observed 27-nm axial pattern.  相似文献   

2.
The F18 fimbriae expressed by porcine toxigenic Escherichia coli strains are 1- to 2-mm-long filaments that mediate the adhesion of the bacteria to enterocytes. The backbone of these fimbriae is built from a major structural 15.1-kDa protein, FedA. The structure of isolated negatively stained F18 fimbriae imaged by dark-field scanning transmission electron microscopy (STEM) was resolved to approximately 2 nm. Analyzing their helical symmetry showed the axially repeating units to alternate in a “zigzag” manner around the helical axis with an axial rise of 2.2 nm. Two repeating units give rise to the observed 4.3-nm helical repeat, which is practically identical to the pitch of the one-start helix formed. Additionally, an axially repeating pattern with a 27-nm spacing was found on rotary-shadowed fimbriae. Mass-per-length determination of unstained F18 fimbriae by STEM revealed the axially repeating unit to have a molecular mass of 25.4 kDa, indicating that it is a FedA monomer, with the difference in mass arising from the minor subunits, FedE and FedF. The presence of the latter two proteins might cause the observed 27-nm axial pattern.  相似文献   

3.
Fimbrial adhesins: similarities and variations in structure and biogenesis   总被引:9,自引:0,他引:9  
Abstract Fimbriae are wiry (2 to 4 nm diam.) or rod-shaped (6 to 8 nm diam.), fibre-like structures on the surfaces of bacteria which mediate attachment to host cells. Much has been learned in recent years about the biogenesis, structure and regulation of expression of these adhesive organelles in Gram-negative bacteria. Analyses of the genetic determinants encoding the biogenesis of fimbriae has revealed that the adhesive interaction of fimbriae can be mediated by major subunits (CFA/I and CS1 fimbriae) or minor subunits (P, S, and type 1 fimbriae), with the adhesin being located either at the tip of the fimbria or along the length of the fimbrial shaft. Minor subunits can also act as adapters, anchors, initiators or elongators. Post-translational glycosylation of the type 4 pilins of Neisseria gonorrhoeae, Neisseria meningitidis and Pseudomonas aeruginosa has been demonstrated. The structures of the PapD chaperone of Escherichia coli and of N. gonorrhoeae type 4 fimbrin have been resolved at 2.0–2.6 Å. Rod-shaped fimbriae should not be thought of as being rigid inflexible structures but rather as dynamic structures which can undergo transition from a helicoidal to a fibrillar conformation to provide a degree of elasticity and plasticity to the fimbriae so that they can resist shear forces, rather like a bungee cord. At least four mechanisms have been identified in the assembly of fimbriae from fimbrin subunits, namely the chaperone-usher pathway (e.g., P-fimbriae of uropathogenic E. coli ), the general secretion assembly pathway (e.g., type 4 fimbriae or N -methylphenylalanine fimbriae of P. aeruginosa , the extracellular nucleation-precipitation pathway (e.g., curli of E. coli ) and the CFA/I, CS1 and CS2 fimbrial pathway.  相似文献   

4.
Interaction of Actinomyces oris with salivary proline-rich proteins (PRPs), which serve as fimbrial receptors, involves type 1 fimbriae. Encoded by the gene locus fimQ-fimP-srtC1, the type 1 fimbria is comprised of the fimbrial shaft FimP and the tip fimbrillin FimQ. Fimbrial polymerization requires the fimbria-specific sortase SrtC1, which catalyzes covalent linkage of fimbrial subunits. Using genetics, biochemical methods, and electron microscopy, we provide evidence that the tip fimbrillin, FimQ, is involved in fimbrial assembly and interaction with PRPs. Specifically, while deletion of fimP completely abolished the type 1 fimbrial structures, surface display of monomeric FimQ was not affected by this mutation. Surprisingly, deletion of fimQ significantly reduced surface assembly of the type 1 fimbriae. This defect was rescued by recombinant FimQ ectopically expressed from a plasmid. In agreement with the role of type 1 fimbriae in binding to PRPs, aggregation of A. oris with PRP-coated beads was abrogated in cells lacking srtC1 or fimP. This aggregation defect of the ΔfimP mutant was mainly due to significant reduction of FimQ on the bacterial surface, as the aggregation was not observed in a strain lacking fimQ. Increasing expression of FimQ in the ΔfimP mutant enhanced aggregation, while overexpression of FimP in the ΔfimQ mutant did not. Furthermore, recombinant FimQ, not FimP, bound surface-associated PRPs in a dose-dependent manner. Thus, not only does FimQ function as the major adhesin of the type 1 fimbriae, it also plays an important role in fimbrial assembly.  相似文献   

5.
The genetic organization of the foc gene cluster has been studied; six genes involved in the biogenesis of F1C fimbriae were identified. focA encodes the major fimbrial subunit, focC encodes a product that is indispensable for fimbria formation, focG and focH encode minor fimbrial subunits, and focI encodes a protein which shows similarities to the subunit protein FocA. Apart from the FocA major subunits, purified F1C fimbriae contain at least two minor subunits, FocG and FocH. Minor proteins of similar size were observed in purified S fimbriae. Remarkably, some mutations in the foc gene cluster result in an altered fimbrial morphology, i.e., rigid stubs or long, curly fimbriae.  相似文献   

6.
We have used scanning transmission electron microscopy to elucidate the question of how intermediate filament (IF) subunits of widely differing mass can all form morphologically similar IF. From scanning transmission electron micrographs, the distributions of mass were determined for three types of epidermal keratin IF reassembled in vitro from mixtures of subunits with substantially different masses, viz., "light" and "heavy" human keratins with [Mr] = 50,000 and 56,000, respectively, and mouse keratins of [Mr] = 63,000. Their principal assembly products were found to average 22, 25, and 29 kdalton/nm, respectively. These densities, which correspond to immature "minimal form" IF (Steven, A. C., J. Wall, J. Hainfeld, and P. M. Steinert, 1982, Proc. Natl. Acad. Sci. USA., 79:3101-3105), are directly proportional to the average subunit masses. The human keratin IF (but not those of mouse) also contained minor amounts (15-20%) of more massive polymers averaging 33 and 35 kdalton/nm, respectively, which probably represent mature IF. Taken together with earlier results on IF of other subclasses, these results indicate that the average linear density of IF scales according to the average mass of their constituent subunits, both for "minimal form" and for mature IF. As underlying mechanism for this homology, we propose that the fundamental building-blocks of all these IF contain a common structural element whose packing within the various IF is likewise conserved and which specifies the overall structure. The variable amounts of mass in the nonconserved moieties account for the observed proportionality. This scheme fits with amino acid sequence data for several IF subunits that have revealed, as a likely candidate for the common element, an essentially conserved alpha-helical domain, contrasting with the highly variable sequences of their non-alpha-helical terminal domains.  相似文献   

7.
Type 4 fimbriae are found in a range of pathogenic bacteria, including Bacteroides nodosus, Moraxella bovis, Neisseria gonorrhoeae, and Pseudomonas aeruginosa. The structural subunits of these fimbriae all contain a highly conserved hydrophobic amino-terminal sequence preceding a variable hydrophilic carboxy-terminal region. We show here that recombinant P. aeruginosa cells containing the B. nodosus fimbrial subunit gene under the control of a strong promoter (pL, from bacteriophage lambda) produced large amounts of fimbriae that were structurally and antigenically indistinguishable from those produced by B. nodosus. This was demonstrated by fimbrial isolation and purification, electrophoretic and Western transfer analyses, and immunogold labeling and electron microscopy. These results suggest that type 4 fimbriated bacteria use a common mechanism for fimbrial assembly and that the structural subunits are interchangeable, thereby providing a basis for the development of multivalent vaccines.  相似文献   

8.
Computer analysis of electron micrographs of negatively stained thick filaments isolated from the telson levator muscle of the horseshoe crab (Limulus polyphemus) has shown that they have a four-stranded helical structure. The repeating units along each helix have a bent extended shape (measuring approximately 20 nm × 8 nm × 8 nm) and are inclined at an angle of about 30 ° to the helical path. At the resolution of this study, it was difficult to establish the exact size of the surface subunits, but our results are probably more consistent with each unit representing the two heads of a single myosin molecule rather than larger aggregates.  相似文献   

9.
Type 1 fimbriae of enterobacteria are heteropolymeric organelles of adhesion composed of FimH, a mannose-binding lectin, and a shaft composed primarily of FimA. We compared the binding activities of recombinant clones expressing type 1 fimbriae from Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium for gut and uroepithelial cells and for various soluble mannosylated proteins. Each fimbria was characterized by its capacity to bind particular epithelial cells and to aggregate mannoproteins. However, when each respective FimH subunit was cloned and expressed in the absence of its shaft as a fusion protein with MalE, each FimH bound a wide range of mannose-containing compounds. In addition, we found that expression of FimH on a heterologous fimbrial shaft, e.g. K. pneumoniae FimH on the E. coli fimbrial shaft or vice versa, altered the binding specificity of FimH such that it closely resembled that of the native heterologous type 1 fimbriae. Furthermore, attachment to and invasion of bladder epithelial cells, which were mediated much better by native E. coli type 1 fimbriae compared with native K. pneumoniae type 1 fimbriae, were found to be dependent on the background of the fimbrial shaft (E. coli versus K. pneumoniae) rather than the background of the FimH expressed. Thus, the distinct binding specificities of different enterobacterial type 1 fimbriae cannot be ascribed solely to the primary structure of their respective FimH subunits, but are also modulated by the fimbrial shaft on which each FimH subunit is presented, possibly through conformational constraints imposed on FimH by the fimbrial shaft. The capacity of type 1 fimbrial shafts to modulate the tissue tropism of different enterobacterial species represents a novel function for these highly organized structures.  相似文献   

10.
A strain of Salmonella of serotype Salinatis, that produced a mannose-resistant and eluting haemagglutinin (MREHA) when cultured at 37 degrees C but not at 18 degrees C, was examined by electron microscopy after negative staining. Production of this MREHA, previously described as being non-fimbrial, was correlated with the presence of thin fimbriae which had an external diameter of 3.6 nm. The purified Salinatis thin fimbriae had an estimated Mr of 19 kDa. This fimbrial MREHA was not produced by strains of the antigenically related serotypes Duisburg and Sandiego.  相似文献   

11.
We examined the isolation of fimbriae from Bacteroides nodosus. It was found that the best preparations were obtained from the supernatant of washed cells cultured on solid medium, from which fimbriae could be recovered in high yield and purity by a simple one-step procedure. Analysis of such preparations by sodium dodecyl sulfate gel electrophoresis showed that greater than 98% of the protein consisted of fimbrial structural subunits whose molecular weight was ca. 17,000. These preparations also usually exhibited minor contamination with a polypeptide of ca. 80,000 molecular weight, as well as trace amounts of lipopolysaccharide. Attempts to release additional fimbriae by the traditional means of subjecting the bacterial cells to physical stress, such as shearing or heating, resulted primarily in an increase in the level of contamination, without significant gain in the yield of fimbriae. Removal of the 80,000-dalton component could not be achieved by any of a variety of techniques normally used in fimbriae purification, including isoelectric precipitation, MgCl2 precipitation, and CsCl gradient ultracentrifugation, implying a direct physical association with the fimbrial strand. Electron micrographs of fractions containing this protein show cap-shaped structures attached to the ends of what appeared to be fimbrial stubs. These observations suggest that the 80,000-dalton polypeptide may actually constitute the basal attachment site which anchors the fimbria to the outer membrane, analogous to a similar protein recently described in enterotoxigenic strains of Escherichia coli. In B. nodosus, this 80,000-dalton protein is a major surface antigen, and like the fimbrial subunit, exhibited variation in electrophoretic mobility between serotypically different isolates.  相似文献   

12.
Four genes encoding for polypeptides with apparent molecular weights of 17,000, 26,000 (the fimbrial subunit), 27,000, and 81,000 have been implicated in the biosynthesis of the K88ab fimbria (Mooi et al., J. Bacteriol. 150:512-521, 1982). Escherichia coli mutants with defects in these genes were examined for the presence of fimbrial precursors. An analysis of these mutants revealed that fimbrial subunits accumulated transiently in the periplasmic space before being translocated across the outer membrane. The 81,000-dalton (d) polypeptide is probably involved in translocating fimbrial subunits across the outer membrane, because in the absence of this polypeptide the fimbrial subunits remained in the periplasmic space, where they were found to be associated with the 17,000- and 27,000-d polypeptides. In mutants with a deletion in the gene for the 27,000-d polypeptide, fimbrial precursors were not detected, because the fimbrial subunits were degraded. The 27,000-d polypeptide might be involved in stabilizing a conformation of the fimbrial subunit required to translocate it across the outer membrane. In the absence of the 17,000-d polypeptide, most fimbrial subunits were found in the periplasmic space associated with the 27,000-d polypeptide. However, small amounts of subunits were also translocated across the outer membrane. These extracellular subunits did not adhere to brushborders, suggesting that fimbrial subunits must be modified by the 17,000-d polypeptide to be assembled into functional fimbriae. A model for the biosynthesis of the K88ab fimbria is proposed.  相似文献   

13.
This study investigated the structural and mechanical properties of Klebsiella pneumoniae type 3 fimbriae, which constitute a known virulence factor for the bacterium. Transmission electron microscopy and optical tweezers were used to understand the ability of the bacterium to survive flushes. An individual K. pneumoniae type 3 fimbria exhibited a helix-like structure with a pitch of 4.1 nm and a three-phase force-extension curve. The fimbria was first nonlinearly stretched with increasing force. Then, it started to uncoil and extended several micrometers at a fixed force of 66 ± 4 pN (n = 22). Finally, the extension of the fimbria shifted to the third phase, with a characteristic force of 102 ± 9 pN (n = 14) at the inflection point. Compared with the P fimbriae and type 1 fimbriae of uropathogenic Escherichia coli, K. pneumoniae type 3 fimbriae have a larger pitch in the helix-like structure and stronger uncoiling and characteristic forces.  相似文献   

14.
Type 1 fimbriae of Salmonella enteritidis.   总被引:11,自引:0,他引:11       下载免费PDF全文
Salmonella enteritidis was previously shown to produce fimbriae composed of 14,000-molecular-weight (Mr) fimbrin monomers (J. Feutrier, W. W. Kay, and T. J. Trust, J. Bacteriol. 168:221-227, 1986). Another distinct fimbrial structure, comprising 21,000-Mr fimbrin monomers, has now been identified. These fimbriae are simply designated as SEF 14 and SEF 21, respectively (for S. enteritidis fimbriae and the Mr [in thousands] of the fimbrin monomer). A simple method for the purification of both structures was developed by using the different biochemical properties of these fimbriae. SEF 21 remained intact after being boiled in sodium dodecyl sulfate but readily dissociated into subunits of 21,000 Mr at pH 2.2. The overall amino acid composition and the N-terminal amino acid sequence of the SEF 21 fimbrin were distinct from those of SEF 14 but were virtually identical to the predicted sequence for type 1 fimbrin of Salmonella typhimurium. Immunoelectron microscopy of S. enteritidis clearly revealed fimbrial structures that reacted with immune serum specific to the 21,000-Mr fimbrin. Immune sera raised against this subunit were cross-reactive with type 1 fimbrins found in whole-cell lysates of S. typhimurium, Salmonella illinois, and Salmonella cubana. However, there was no cross-reaction with Escherichia coli type 1 fimbriae or with other fimbrins produced by S. enteritidis. Under certain growth conditions, S. enteritidis produced both SEF 14 and SEF 21. However, when S. enteritidis was grown at 30 degrees C or lower, only the 21,000-Mr SEF 21 fimbrin could be detected. There was a direct correlation between mannose-sensitive hemagglutination and the presence of SEF 21.  相似文献   

15.
The 987P fimbria of enterotoxigenic Escherichia coli is a heteropolymeric structure which consists essentially of a major FasA subunit and a minor subunit, the FasG adhesin. The latter harbors the binding moiety for receptor molecules on piglet intestinal epithelial cells. In this study, anti-FasF antibody probes were developed and used to demonstrate that the FasF protein represents a new minor fimbrial component. FasF was identified in highly purified fimbriae, and its sequence demonstrated significant levels of similarity with that of FasA. Immune electron microscopy localized both the FasG and FasF proteins at the fimbrial tip as well as at broken ends and at various intervals along the fimbrial length. The presence of these minor proteins in purified 987P fimbriae was corroborated by enzyme-linked immunosorbent assay inhibitions. Finally, the use of nonfimbriated fasG, fasF, and fasA mutants indicated that subunit translocation through the outer membrane follows a specific order, FasG being the first, FasF being the second, and FasA being the third type of exported subunit. Since fimbriae are thought to grow from the base, FasG is proposed to be a tip adhesin and FasF is proposed to be a linker molecule between the adhesin and the fimbrial shaft. Moreover, export of FasG (or FasF) in the absence of FasF (or FasA) indicates that during the process of fimbrial biogenesis in the outer membrane, translocating events precede the initiation of subunit heteropolymerization.  相似文献   

16.
P fimbriae on uropathogenic Escherichia coli O16:K1 and O18 strains   总被引:2,自引:0,他引:2  
Abstract The fimbrial composition of 12 P-fimbriate uropathogenic Escherichia coli O16 and O18 strains was analysed by immunoprecipitation with 14 fimbria-specific antisera. All the O16 strains possessed a P fimbrial serovariant with an apparent M r of 17500. One strain had an additional, serologically closely related P fimbria with an apparent M r of 19 800. Two groups were found among the O18 strains; one possessing a type 1C fimbria and a 19800-Da P fimbria, the other lacking type 1C fimbriae and possessing a P-fimbrial variant with an apparent M r of 17 800. Fimbriae on strains within the groups were serologically similar by immunoprecipitation assays. Also, the fimbriae on the O16 and O18 strains were mutually cross-reactive. The grouping of the O18 strains by fimbrial serology corresponded to the previous clonal grouping based on other phenotypic characters.  相似文献   

17.
Glycerol was found to unravel the helical conformation of Escherichia coli type 1 fimbriae without appreciable depolymerization. The linearized fimbrial polymers have a diameter of 2 nm, react strongly with a monoclonal antibody directed at an inaccessible epitope on native fimbriae, and display greater mannose-binding activity and trypsin sensitivity than native fimbriae. Removal of glycerol by dialysis results in spontaneous reassembly of the linear polymers into structures morphologically, antigenically, and functionally indistinguishable from native fimbriae.  相似文献   

18.
19.
20.
We determined whether the molecular structures through which force is applied to receptor–ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3–1.5 μm in length) built from a helically coiled structural subunit, FimA, and an adhesive subunit, FimH, incorporated at the fimbrial tip. Previously reported data suggest that FimH binds to mannosylated ligands on the surfaces of host cells via catch bonds that are enhanced by the shear-originated tensile force. To understand whether the mechanical properties of the fimbrial rod regulate the stability of the FimH–mannose bond, we pulled the fimbriae via a mannosylated tip of an atomic force microscope. Individual fimbriae rapidly elongate for up to 10 μm at forces above 60 pN and rapidly contract again at forces below 25 pN. At intermediate forces, fimbriae change length more slowly, and discrete 5.0 ± 0.3–nm changes in length can be observed, consistent with uncoiling and coiling of the helical quaternary structure of one FimA subunit at a time. The force range at which fimbriae are relatively stable in length is the same as the optimal force range at which FimH–mannose bonds are longest lived. Higher or lower forces, which cause shorter bond lifetimes, cause rapid length changes in the fimbria that help maintain force at the optimal range for sustaining the FimH–mannose interaction. The modulation of force and the rate at which it is transmitted from the bacterial cell to the adhesive catch bond present a novel physiological role for the fimbrial rod in bacterial host cell adhesion. This suggests that the mechanical properties of the fimbrial shaft have codeveloped to optimize the stability of the terminal adhesive under flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号