首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used a panel of monoclonal antibodies in a study of the expression of multiple tubulins in Physarum polycephalum. Three anti-beta-tubulin monoclonal antibodies, DM1B, DM3B3 and KMX-1 all reacted with the beta 1-tubulin isotypes expressed in both myxamoebae and plasmodia. However, these antibodies showed a spectrum of reduced reactivity with the plasmodial beta 2-tubulin isotype - the competence of recognition of this isotype was graded DM1B greater than KMX-1 greater than DM3B3. The anti-alpha-tubulin monoclonal antibody, YOL 1/34 defined the full complement of Physarum alpha-tubulin isotypes, whilst the anti-alpha-tubulin monoclonal antibody, KMP-1 showed a remarkably high degree of isotype specificity. KMP-1 recognises all of the myxamoebal alpha 1-tubulin isotypes but only recognises 3 out of the 4 alpha 1-tubulin isotypes expressed in the plasmodium (which normally focus in the same 2D gel spot). KMP-1 does not recognise the plasmodial specific alpha 2-tubulin isotype. This monoclonal antibody reveals a new level of complexity amongst the tubulin isotypes expressed in Physarum and suggests that monoclonal antibodies are valuable probes for individual members of multi-tubulin families.  相似文献   

2.
We have used monoclonal antibodies specific for acetylated and unacetylated alpha-tubulin to characterize the acetylated alpha-tubulin isotype of Physarum polycephalum, its expression in the life cycle, and its localization in particular microtubular organelles. We have used the monoclonal antibody 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094) as the probe for acetylated alpha-tubulin and have provided a biochemical characterization of the monoclonal antibody KMP-1 as a probe for unacetylated tubulin in Physarum. Concomitant use of these two probes has allowed us to characterize the acetylated alpha-tubulin of Physarum as the alpha 3 isotype. We have detected this acetylated alpha 3 tubulin isotype in both the flagellate and in the myxameba, but not in the plasmodium. In the flagellate, acetylated tubulin is present in both the flagellar axonemes and in an extensive array of cytoplasmic microtubules. The extensive arrangement of acetylated cytoplasmic microtubules and the flagellar axonemes are elaborated during the myxameba-flagellate transformation. In the myxameba, acetylated tubulin is not present in the cytoplasmic microtubules nor in the mitotic spindle microtubules, but is associated with the two centrioles of this cell. These findings, taken together with the apparent absence of acetylated alpha-tubulin in the ephemeral microtubules of the plasmodium suggest a natural correspondence between the presence of acetylated alpha-tubulin and microtubule organelles that are intrinsically stable or cross-linked.  相似文献   

3.
Distribution of acetylated alpha-tubulin in Physarum polycephalum   总被引:4,自引:1,他引:3       下载免费PDF全文
The expression and cytological distribution of acetylated alpha-tubulin was investigated in Physarum polycephalum. A monoclonal antibody specific for acetylated alpha-tubulin, 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094), was used to screen for this protein during three different stages of the Physarum life cycle--the amoeba, the flagellate, and the plasmodium. Western blots of two-dimensional gels of amoebal and flagellate proteins reveal that this antibody recognizes the alpha 3 tubulin isotype, which was previously shown to be formed by posttranslational modification (Green, L. L., and W. F. Dove, 1984, Mol. Cell. Biol., 4:1706-1711). Double-label immunofluorescence demonstrates that, in the flagellate, acetylated alpha-tubulin is localized in the flagella and flagellar cone. Similar experiments with amoebae interestingly reveal that only within the microtubule organizing center (MTOC) are there detectable amounts of acetylated alpha-tubulin. In contrast, the plasmodial stage gives no evidence for acetylated alpha-tubulin by Western blotting or by immunofluorescence.  相似文献   

4.
We have used the mouse monoclonal antibody 6-11 B-1, specific for acetylated alpha-tubulin, to determine the distribution of acetylated alpha-tubulin in in vitro-assembled microtubules and retinal tissue. Analysis by immunoblots revealed that microtubules assembled from bovine brain extracts contain both acetylated and nonacetylated alpha-tubulin. Immunofluorescence, using 6-11 B-1 and antitubulin B-5-1-2, a monoclonal antibody specific for alpha-tubulin, demonstrated the colocalization of both alpha-tubulin species in neurons of the retina and that acetylated microtubules are relatively abundant in neurons. However, analysis at higher resolution revealed that rod photoreceptors contain spatially distinct microtubule arrays which differ in content of acetylated alpha-tubulin and differ in stability. Acetylated microtubules which composed those of the rod outer segment and connecting cilium were resistant to depolymerization in nocodazole or colchicine. In contrast, the nonacetylated microtubules which composed those of the rod-inner segment were depolymerized in nocodazole or colchicine. Therefore, these acetylated microtubules are more resistant to depolymerization than non-acetylated microtubules.  相似文献   

5.
The subcellular distribution of microtubules containing acetylated alpha-tubulin in mammalian cells in culture was analyzed with 6-11B-1, a monoclonal antibody specific for acetylated alpha-tubulin. Cultures of 3T3, HeLa, and PtK2 cells were grown on coverslips and observed by immunofluorescence microscopy after double-staining by 6-11B-1 and B-5-1-2, a monoclonal antibody specific for all alpha-tubulins. The antibody 6-11B-1 binds to primary cilia, centrioles, mitotic spindles, midbodies, and to subsets of cytoplasmic microtubules in 3T3 and HeLa cells, but not in PtK2 cells. These observations confirm that the acetylation of alpha-tubulin is a modification occurring in different microtubule structures and in a variety of eukaryotic cells. Some features of the acetylation of cytoplasmic microtubules of mammalian cells are also described here. First, acetylated alpha-tubulin is present in microtubules that, under depolymerizing conditions, are more stable than the majority of cytoplasmic microtubules. In addition to the specific microtubule frameworks already mentioned, cytoplasmic microtubules resistant to nocodazole or colchicine, but not cold-resistant microtubules, contain more acetylated alpha-tubulin than the rest of cellular microtubules. Second, the alpha-tubulin in all cytoplasmic microtubules of 3T3 and HeLa cells becomes acetylated in the presence of taxol, a drug that stabilizes microtubules. Third, acetylation and deacetylation of cytoplasmic microtubules are reversible in cells released from exposure to 0 degrees C or antimitotic drugs. Fourth, the epitope recognized by the antibody 6-11B-1 is not absolutely necessary for cell growth and division. This epitope is absent in PtK2 cells. The acetylation of alpha-tubulin could regulate the presence of microtubules in specific intracellular spaces by selective stabilization.  相似文献   

6.
The distribution of acetylated alpha-tubulin in rat cerebellum was examined and compared with that of total alpha-tubulin and tyrosinated alpha-tubulin. From immunoperoxidase-stained vibratome sections of rat cerebellum it was found that acetylated alpha-tubulin, detectable with monoclonal 6-11B-1, was preferentially enriched in axons compared with dendrites. Parallel fiber axons, in particular, were labeled with 6-11B-1 yet unstained by an antibody recognizing tyrosinated alpha-tubulin, indicating that parallel fibers contain alpha-tubulin that is acetylated and detyrosinated. Axonal microtubules are known to be highly stable and the distribution of acetylated alpha-tubulin in other classes of stable microtubules suggests that acetylation and possibly detyrosination may play a role in the maintenance of stable populations of microtubules.  相似文献   

7.
《The Journal of cell biology》1995,129(5):1301-1310
In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications.  相似文献   

8.
We have examined the distribution of acetylated alpha-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meninges. Meningeal fibroblasts showed heterogeneous staining patterns with a monoclonal antibody against acetylated alpha-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-alpha-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated alpha-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated alpha-tubulin, it was found that acetylated alpha-tubulin and tyrosinated alpha-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated alpha-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated alpha-tubulin and was cold stable, and the other contained tyrosinated alpha-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of alpha-tubulin are involved in the specification of stable microtubules.  相似文献   

9.
A monoclonal antibody, 6-11B-1, specific for acetylated alpha-tubulin (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094) was used to study the distribution of this molecule in interphase cells of Chlamydomonas reinhardtii. Double-label immunofluorescence was performed using 6-11B-1, and 3A5, an antibody specific for all alpha-tubulin isoforms. It was found that acetylated alpha-tubulin is not restricted to the axonemes, but is also present in basal bodies and in a subset of cytoplasmic microtubules that radiate from the basal bodies just beneath the plasma membrane. Immunoblotting experiments of basal body polypeptide components using 6-11B-1 as a probe confirmed that basal bodies contain acetylated alpha-tubulin. In the cell body, 6-11B-1 stained an average of 2.2 microtubules/cell, while 3A5 stained an average of 6.5 microtubules. Although exposure to 0 degrees C depolymerized both types of cytoplasmic microtubules, exposure to various concentrations of colchicine or nocodazole showed that the acetylated microtubules are much more resistant to drug-induced depolymerization than nonacetylated microtubules. Axonemes and basal bodies are already known to be colchicine-resistant. All acetylated microtubules appear, therefore, to be more drug-resistant than nonacetylated microtubules. The acetylation of alpha-tubulin may be part of a mechanism that stabilizes microtubules.  相似文献   

10.
About 96% of the amino acid sequence of an alpha-tubulin from the slime mould Physarum polycephalum has been determined. Of 430 sequenced amino acids, 30 differ from the deduced amino acid sequence of a recently published alpha-tubulin complementary DNA from the plasmodial form of P. polycephalum. The myxamoebal alpha-tubulin differs from all other known alpha-tubulins in one of the last three C-terminal amino acids that are Gly-Glu-Tyr instead of the usual Glu-Glu-Tyr. These last three amino acids are preceded by 11 residues that appear to be particularly susceptible to mutation. No heterogeneity was found whilst sequencing the myxamoebal alpha-tubulin, indicating that only one type of alpha-tubulin is present in myxamoebae. This alpha-tubulin appears to be less conserved than the previously described plasmodial alpha-tubulin, supporting the hypothesis that the structural constraints on tubulin in axonemes have a significant effect on its rate of mutation.  相似文献   

11.
alpha-Tubulin microheterogeneity was studied in Tetrahymena pyriformis. Using two-dimensional electrophoretic analysis, we found between five and seven alpha-tubulin and four beta-tubulin isoforms in cilia and four or five alpha-tubulins and two beta-tubulins in cytoskeleton. Immunoblotting assay with anti-(acetyl alpha-tubulin) monoclonal antibody 6-11B-1 and [3H]acetate labelling revealed that the alpha-tubulin isoforms are post-translationally modified by acetylation. Our results also show that tubulins in the soluble cytoplasmic fraction are not acetylated. Nevertheless, a slight reaction with the antibody 6-11 B-1 can be observed in the taxol and vinblastine-treated cytoplasmic pool. Pulse/chase experiments using [35S]methionine during cell reciliation have demonstrated that the basic alpha-tubulin isoforms are converted into acidic isoforms in the absence of protein synthesis, suggesting that the basic alpha-tubulin is the precursor of the acidic forms which are found in cilia and cytoskeleton. In-vivo-translation selection demonstrated the existence of a single precursor molecule which corresponded to the most basic alpha-tubulin. Taken together, our results provide evidence for the existence of post-translational modifications, namely acetylation. Nevertheless, other post-translational mechanisms involved in the biosynthesis of microtubules of cilia and cytoskeleton are required to explain the whole alpha-tubulin heterogeneity.  相似文献   

12.
Three monoclonal alpha-tubulin antibodies YL 1/2 (Kilmartin et al., 1982), 6-11B-1 (Piperno and Fuller, 1985) and DM1A (Blose et al., 1984) were used in indirect immunofluorescence (IIF) microscopy of the microtubule (MT) cytoskeleton in tobacco (Nicotiana tabacum) pollen tubes. The majority of pollen tube MTs contain tyrosinated alpha-tubulin recognized by YL 1/2. Acetylated alpha-tubulin revealed by 6-11B-1 was detected in the generative cell and in the kinetochore fibers, in polar spindle regions, and in the cell plate of the phragmoplast during generative cell division. In addition, small fragments of acetylated microtubules were seen in the older parts of the pollen tube grown on a taxol medium. The interaction of pollen tube MTs with mAb 6-11B-1 suggested that acetylation of alpha-tubulin correlates well with the putative arrays of stable MTs.  相似文献   

13.
We used monoclonal antibodies specific for acetylated and nonacetylated alpha-tubulin to detect and to localize microtubules containing acetylated alpha-tubulin (stable microtubules) in the pathogenic protozoa Tritrichomonas foetus and Trichomonas vaginalis. SDS-PAGE analysis showed that tubulin is a major protein of both parasites, being enriched in cytoskeletal preparations of whole cells extracted with Triton X-100. The monoclonal antibodies, which recognize all isoforms of alpha-tubulin (B-5-1-2) and only acetylated alpha-tubulin (6-11B-1), bind to the tubulin of T. foetus and T. vaginalis as seen by immunoblotting. Tubulin-containing structures were localized using immunofluorescence microscopy and transmission electron microscopy of the whole cytoskeleton previously incubated in the presence of the anti-tubulin antibodies and a second antibody-gold complex, and then processed using the negative staining or replica techniques. The results obtained indicate that, in addition to the flagellar microtubules, those which form the peltar-axostyle system represent stable microtubules containing acetylated alpha-tubulin.  相似文献   

14.
Early development in Xenopus is characterized by dramatic changes in the organization of the microtubule cytoskeleton. We have used whole-mount immunocytochemistry to follow the expression of the acetylated form of alpha-tubulin during early Xenopus development. In the egg and early embryo, the monoclonal anti-acetylated tubulin antibody 6-11B-1 stained meiotic and mitotic spindles, midbody microtubules, and what appears to be the central region of the sperm aster; the antibody did not stain the sperm aster itself or the cortical microtubule system associated with the rotation of the fertilized egg. Following gastrulation, acetylated tubulin disappeared from all but mitotic midbody microtubules. During the course of neurulation high levels of acetylated tubulin reappeared in the precursors of the ciliated epidermal cells (stage 15), transiently in neural folds (stage 16/17), in neuronal processes (stage 18/19), and in somas (stage 21). The changing pattern of anti-acetylated tubulin staining during Xenopus development raises intriguing questions as to the physiological significance of tubulin acetylation.  相似文献   

15.
Cell type-dependent expression of tubulins in Physarum   总被引:19,自引:7,他引:12       下载免费PDF全文
Three alpha-tubulins and two beta-tubulins have been resolved by two-dimensional gel electrophoresis of whole cell lysates of Physarum myxamoebae or plasmodia. Criteria used to identify the tubulins included migration on two-dimensional gels with myxamoebal tubulins purified by self-assembly into microtubules in vitro, peptide mapping with Staphylococcus V8 protease and with chymotrypsin, immunoprecipitation with a monoclonal antibody specific for beta-tubulin, and, finally, hybrid selection of specific mRNA by cloned tubulin DNA sequences, followed by translation in vitro. Differential expression of the Physarum tubulins was observed. The alpha 1- and beta 1-tubulins were detected in both myxamoebae and plasmodia; alpha 2 and beta 2 were detected only in plasmodia, alpha 3 was detected only in the myxamoebal phase, and may be specific to the flagellate. Observation of more tubulin species in plasmodia than in myxamoebae was remarkable; the only microtubules detected in plasmodia are those of the mitotoic spindle, whereas myxamoebae display cytoplasmic, centriolar, flagellar, and mitotic-spindle microtubules. In vitro translation of myxamoebal and plasmodial RNAs indicated that there are distinct mRNAs, and therefore probably separate genes, for the alpha 1-, alpha 2-, beta 1-, and beta 2-tubulins. Thus, the different patterns of tubulin expression in myxamoebae and plasmodia reflect differential expression of tubulin genes.  相似文献   

16.
17.
The differently acetylated subfractions of histone H4 isolated from cuttlefish testis and from calf thymus were separated by ion exchange chromatography on sulfopropyl-Sephadex, using a shallow linear gradient of guanidine hydrochloride in the presence of 6 M urea at pH 3.0. The tetra-, tri-, di-, mono-, and nonacetylated forms of cuttlefish H4 represent 2, 6.4, 18, 32.2, and 41.4% of the whole histone, respectively. The di-, mono-, and nonacetylated forms of calf H4 represent 11.7, 41.3, and 44% of the whole histone, respectively. The acetylation sites were determined in each subfraction by identification of the acetylated peptides. In each acetylated H4 subfraction, the acetylated tryptic peptides were identified by peptide mapping and amino acid analysis with reference to the peptide map of nonacetylated H4. In cuttlefish testis H4, lysine 12 is the main site of acetylation in the monoacetylated subfraction; lysines 5 and 12 are found acetylated in diacetylated H4; lysines 5, 12, and 16 are found acetylated in triacetylated H4. From these results and the stoichiometry of the different H4 subfractions, it can be concluded that lysine 5 is acetylated after lysine 12. In calf thymus, lysine 16 is the only site of acetylation in the monoacetylated subfraction. All the diacetylated forms are acetylated in lysine 16, the second site of acetylation being, in decreasing order, lysine 12, lysine 5, or lysine 8. These observations suggest that acetylation occurs in a sequential manner. Moreover, the sites of acetylation depend upon the biological event in which acetylation is involved.  相似文献   

18.
Huang RF  Lloyd CW 《FEBS letters》1999,443(3):317-320
Gibberellic acid is known to stabilise microtubules in plant organs against depolymerisation. We have now devised a simplified cell system for studying this. Pretreatment of a maize cell suspension with gibberellic acid for just 3 h stabilised protoplast microtubules against depolymerisation on ice. In other eukaryotes, acetylation of alpha-tubulin is known to correlate with microtubule stabilisation but this is not established in plants. By isolating the polymeric tubulin fraction from maize cytoskeletons and immunoblotting with the antibody 6-11B-1, we have demonstrated that gibberellic acid stimulates the acetylation of alpha-tubulin. This is the first demonstrated link between microtubule stabilisation and tubulin acetylation in higher plants.  相似文献   

19.
The heterogeneity of -tubulin and the relative proportions of the tubulin isotypes were investigated in brain membranes of rats of 1, 25 and 180 days of age by using four anti--tubulin antibodies: a) the monoclonal DM1A antibody, specific for -tubulin; b) the monoclonal 6-11B-1 antibody, specific for acetylated tubulin; c) a polyclonal antibody (Glu antibody), specific for detyrosinated tubulin; and d) a polyclonal antibody (Tyr antibody), specific for tyrosinated tubulin. We found that rat brain membranes contain the three tubulin isotypes mentioned above. The proportions of tyrosinated and detyrosinated tubulin relative to total -tubulin were somewhat lower in membrane than in cytosol in animals of 25 and 180 days of age. At day one of development, the proportions in membrane were similar to those found in cytosol. With respect to the acetylated form, it was about 20 times higher in membrane than in cytosol at the three ages studied. The proportion of acetylated tubulin was determined in different subcellular fractions: myelin, synaptic vesicles, mitochondria, microsomes, and plasma membrane. While the amount of total tubulin differed between the different subcellular fractions, the proportion of acetylated tubulin relative to total -tubulin was constant and similar to that found in total membranes. The proportion of acetylated tubulin was also investigated in non-neural tissues (kidney, liver and lung). Although values for cytosol were about 10-fold higher than that found in brain cytosol, no detectable values for membranes could be obtained in these organs.  相似文献   

20.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号