首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We determined the effect of dietary starch on growth performance and feed utilization in European sea bass juveniles. Data on the dietary regulation of key hepatic enzymes of the glycolytic, gluconeogenic, lipogenic and amino acid metabolic pathways (hexokinase, HK; glucokinase, GK; pyruvate kinase, PK; fructose-1,6-bisphosphatase, FBPase; glucose-6-phosphatase, G6Pase; glucose-6-phosphate dehydrogenase, G6PD; alanine aminotransferase, ALAT; aspartate aminotransferase, ASAT and glutamate dehydrogenase, GDH) were also measured. Five isonitrogenous (48% crude protein) and isolipidic (14% crude lipids) diets were formulated to contain 10% normal starch (diet NS10), 10% waxy starch (diet WS10), 20% normal starch (diet NS20), 20% waxy starch (diet WS20) or no starch (control diet). Another diet was formulated with no carbohydrate, and contained 68% crude protein and 14% crude lipids (diet HP). Each experimental diet was fed to triplicate groups of 30 fish (initial weight: 23.3 g) on an equivalent feeding scheme for 12 weeks. The best growth performance and feed efficiency were achieved with fish fed the HP diet. Neither the level nor the nature of starch had measurable effects on growth performance of sea bass juveniles. Digestibility of starch was higher with waxy starch and decreased with increasing levels of starch in the diet. Whole-body composition and plasma metabolites, mainly glycemia, were not affected by the level and nature of the dietary starch. Data on enzyme activities suggest that dietary carbohydrates significantly improve protein utilization associated with increased glycolytic enzyme activities (GK and PK), as well as decreased gluconeogenic (FBPase) and amino acid catabolic (GDH) enzyme activities. The nature of dietary carbohydrates tested had little influence on performance criteria.  相似文献   

2.
Summary. We have shown that urinary urea excretion increased in rats fed a low quality protein. The purpose of present study was to determine whether an addition of dietary limiting amino acids affected urea synthesis in rats fed a low gluten diet. Experiments were done on three groups of rats given diets containing 10% gluten, 10% gluten+0.5% L-lysine or 10% gluten+0.5% L-lysine, 0.2% L-threonine and 0.2% L-methionine for 10d. The urinary excretion of urea, and the liver concentrations of serine and ornithine decreased with the addition of dietary L-lysine, L-threonine and L-methionine. The fractional and absolute rates of protein synthesis in tissues increased with the treatment of limiting amino acids. The activities of hepatic urea-cycle enzymes was not related to the urea excretion. These results suggest that the addition of limiting amino acids for the low gluten diet controls the protein synthesis in tissues and hepatic ornithine and decline urea synthesis.  相似文献   

3.
The study was undertaken to evaluate the effects of dietary protein sources on lipogenesis and fat deposition in a marine teleost, the European seabass (Dicentrarchus labrax). Four isonitrogenous (crude protein (CP, Nx6.25), 44% DM) and isoenergetic (22-23 kJ/g DM) diets were formulated to contain one of the following as the major protein source: fish meal (FM), one of two soy protein concentrates (SPC) and corn gluten meal (CGM). Apparent digestibility coefficients of the diets and raw ingredients, as well as soluble nitrogen (ammonia and urea) and phosphorus excretion were measured. Growth rates of seabass fed plant protein-based diets were significantly lower than those fed fish meal based diet. The protein utilisation was strongly correlated to the dietary essential amino acids index. Measurements of N excretion (ammonia and urea nitrogen) confirmed these data. Daily fat gain at the whole body level ranged between 1.1 to 1.7 g/kg BW, with the highest values being recorded in fish fed the fish meal based diet. Levels of plasma triglycerides and cholesterol were lower in fish fed soy protein diets than in those fed the diet solely based on fish meal. Soy protein rich diets decreased the activities of selected hepatic lipogenic enzymes (glucose 6-phosphate dehydrogenase, malic enzyme, ATP-citrate lysase, acetylcoenzyme A carboxylase and fatty acid synthetase). Highest lipogenic enzyme activities where found in fish fed the fish meal diet, except for fatty acid synthetase which was increased in seabass fed the corn-gluten meal based diets. Overall data suggest that dietary protein sources affects fat deposition and the lipogenic potential in European seabass.  相似文献   

4.
We evaluated the effect of dietary starch level on growth performance, feed utilization, whole-body composition and activity of selected key enzymes of intermediary metabolism in gilthead sea bream juveniles reared at 18 and 25 degrees C. A diet was formulated to contain 48% crude protein, 12% lipids and 30% gelatinized maize starch (diet 30GS). Two other diets were formulated to include the same level of ingredients as diet 30GS except for the gelatinized starch, which was included at 20% (diet 20GS) or 10% (diet 10GS). No adjustment to diet composition was otherwise made. Each diet was fed to triplicate groups of gilthead sea bream (30 g initial mass) for 8 weeks, on a pair-feeding scheme. The higher temperature improved growth performance but the opposite was true for feed efficiency and protein efficiency ratio. Independently of temperature, growth performance, feed efficiency and protein efficiency ratio were lower in fish fed diet 30GS. No effect of temperature or dietary starch level on whole-body composition was noticed. Hepatosomatic index and liver glycogen were higher at 18 degrees C and, within each temperature, in fish fed diet 30GS. Glycemia was not affected by temperature, but was lower in fish fed diet 10GS. Data on enzyme activities showed that increasing water temperature enhances liver glucokinase (GK) and pyruvate kinase (PK) activities, suggesting that gilthead sea bream is more apt to use dietary starch at higher temperatures. No effect of temperature was noticed on hexokinase (HK), fructose-1,6-bisphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GDH) activities. Dietary starch enhanced PK and FBPase activities while depressed GDH activity, suggesting a lack of significant regulation of hepatic glucose utilization and production in this species. HK, GK and G6PD activities were unaffected by dietary composition. Irrespectively of water temperature, gelatinized starch may be included up to 20% in diets for gilthead sea bream juveniles; at higher dietary levels, growth and efficiency of feed utilization are depressed.  相似文献   

5.
The protective effect of dietary l-glutamine against the hepatotoxic action of d-galactosamine (GalN) was investigated by model experiments with rats. Rats fed with 20% casein diets containing 10% free amino acids were injected with GalN, and the serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase activities and the hepatic glycogen content were assayed 20 hours after the injection. These enzyme activities in the group fed with the 10% l-glutamine diet for 8 days were lower than those in the groups fed with the control, 10% l-glutamic acid and 10% l-alanine diets for 8 days. The more prolonged the feeding period with the 10% l-glutamine diet was, the more the serum activity levels of such enzymes were decreased. Although neomycin also lowered these enzyme activities, its simultaneous ingestion with neomycin did not show any additive or synergistic effect. The hepatic glycogen content in the 10% glutamine group still remained high after the GalN treatment. It is therefore assumed that the effectiveness of glutamine intake would have been mediated by glycogen metabolism rather than by uridine metabolism.  相似文献   

6.
Splanchnic sequestration of amino acids (SSAA) is a process observed during aging that leads to decreased peripheral amino acid (AA) availability. The mechanisms underlying SSAA remain unknown. The aim of the present study was to determine whether a high-protein diet could increase nitrogen retention in aged rats by saturating SSAA and whether SSAA could be explained by dysregulation of hepatic nitrogen metabolism. Adult and aged male Sprague-Dawley rats were housed in individual metabolic cages and fed a normal-protein (17% protein) or high-protein diet (27%) for 2 wk. Nitrogen balance (NB) was calculated daily. On day 14, livers were isolated and perfused for 90 min to study AA and urea fluxes. NB was lower in aged rats fed a normal-protein diet than in adults, but a high-protein diet restored NB to adult levels. Isolated perfused livers from aged rats showed decreased urea production and arginine uptake, together with a release of alanine (vs. uptake in adult rats) and a hepatic accumulation of alanine. The in vivo data suggest that SSAA is a saturable process that responds to an increase in dietary protein content. The hepatic metabolism of AA in aged rats is greatly modified, and urea production decreases. This result refutes the hypothesis that SSAA is associated with an increase in AA disposal via urea production.  相似文献   

7.
Our objective was to understand the influence of dietary gluconeogenic amino acids on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). We analyzed the effects of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid (DAA: alanine, aspartic acid or glutamic acid), on the regulation of hepatic glycolytic and gluconeogenic enzymes. We fed juvenile rainbow trout with isonitrogenous and isoenergetic diets in which part of nitrogen from fishmeal was replaced by nitrogen from one of the three DAA. Fish were fed over 9 weeks and samples withdrawn 6 h after feeding or 5 days after food deprivation. Our data did not show a clear effect of an excess of DAA on activities of glycolytic enzymes (glucokinase and pyruvate kinase) compared to the control diet. In contrast, feeding caused a significant repression of gluconeogenic enzyme activities (glucose-6-phosphatase, fructose-1,6-bisphosphatase and mitochondrial phosphoenolpyruvate carboxykinase) only in fish fed the three DAA substituted diets. However, these differences were insufficient to affect postprandial glycemia significantly. In conclusion, an excess of dietary DAA tested does not seem to modify glycemia or to have a negative impact on dietary carbohydrate utilization in rainbow trout.  相似文献   

8.
The quality of dietary protein is an important factor influencing the growth performance of fish. To evaluate the quality of protein, the variables commonly studied are the composition of the essential amino acids, the digestibility and the protein use efficiency. The goal of the present experiment was to test the effect of the dietary non-essential amino acid composition on the growth of Nile tilapia (Oreochromis niloticus). The fish were fed three purified diets differing only in their non-essential amino acid composition. The influence of the experimental diets on the growth performance, on the activity of enzymes involved in the amino acid metabolism, aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT), and on whole body delta(15)N values was investigated. Body mass, lipid, protein and energy gain differed significantly between the feeding groups. The activity of ASAT in the whole liver was significantly higher in fish with a positive protein balance compared to fish which lost protein. Whole body delta(15)N values of fish were negatively correlated with their body mass gain. Despite the poor utilisation of synthetic amino acids, the experiment indicates the importance of the dietary non-essential amino acid composition for the growth performance of fish. The study reveals the possibility to trace the utilisation of synthetic amino acids by determining the isotopic composition of dietary amino acids and tissues or whole bodies of animals.  相似文献   

9.
The influence of the dietary macronutrient balance on the intermediary metabolism of common dentex (Dentex dentex L.) was evaluated. Four experimental diets combining high and low levels of macronutrients were formulated. Dentex fed on 43% protein had higher liver and muscle lipid content, corresponding with an increased hepatic G6PDH activity. This “excess” of hepatic lipids at higher protein levels could be used to obtain energy as would be reflected by hepatic HOAD. In the liver, 43% of dietary protein induced higher AlaAT and FBPase activities. Similarly, dentex fed on the P43C28 and P38C28 diets showed an increased hepatic and muscular gluconeogenic pathways (higher FBPase activity) from amino acids (elevated AlaAT) and/or glycerol (elevated GK). However, changes in glycemia were not observed among dietary treatments. At coronary level, the use of lower dietary protein induced an increase in the activity of glycolytic (PK and HK-IV) and lipolytic (HOAD) enzymes. Considering the overall results and the experimental conditions, it could be suggested that dietary protein could be reduced until 38% without affecting negatively the normal physiology of dentex. Moreover, high dietary carbohydrate levels could not be used efficiently by dentex given that gluconeogenesis occurs.  相似文献   

10.
Circadian variations in liver protein synthesis were were assessed in control rats fed a mixed 10% protein diet and in rats fed proteins as a separate meal either at 09:00 (SF 09) or at 21:00 (SF 21) and provided with a protein-free diet ad libitum. Protein synthesis was measured by incorporation of labelled leucine over a short period of time (15 min) at time-points regularly spaced over 24 h. In controls, the circadian variations observed were of moderate amplitude (from 2.75 mg/h per g at 09:00 to 5.77 mg/h per g at 06:00) correlated with increased protein and RNA contents of the liver. In separately fed animals ingestion of the protein meal triggered a 300% increase in protein synthesis within 1 h while the feeding pattern was unaltered. In the SF 09 group, high synthetic activity was not followed by an increase of hepatic protein content while hepatic urea concentrations were sharply increased and glucogenic amino acid pools were greatly depleted. It is suggested that the high influx of amino acids consecutive to the absorption of the dietary proteins is the key factor stimulating protein synthesis, while synchronisation with the energetic metabolism controls the degree of degradation. The possible involvement of variations in the insulin to glucagon ratio is discussed.  相似文献   

11.
To characterise the effects of dietary protein content on threonine metabolism during pregnancy, rats were fed diets containing 18% or 9% protein and then killed at different stages of gestation. Serum threonine concentrations fell significantly faster in the animals fed the diet containing 9% protein when compared to those fed the diet containing 18% protein. On day 4 of gestation the rate of threonine oxidation was higher in maternal liver homogenates prepared from the animals fed the diet containing 18% protein. The rate of threonine oxidation by liver homogenates fell as gestation proceeded in both diet groups. The activity of threonine dehydrogenase in the maternal liver was unaffected by dietary protein content at all stages of gestation. Serine-threonine dehydratase activity in homogenates of the maternal liver was transiently increased during the early stages of gestation in the animals fed high protein diets but was unchanged in the low protein groups. There was an increase in serine-threonine dehydratase activity in the kidney during the later stages of gestation but this was unaffected by the protein content of the maternal diet. These data show that the changes in free threonine concentrations cannot be accounted for through changes in the oxidation rate and suggest that some other factor influences the unusual metabolism of this amino acid during gestation.  相似文献   

12.
13.
Experiments were carried out to determine whether the addition of a mixture of indispensable amino acids (IAA) lacking in threonine, phenylalanine or histidine, respectively, to a nutritionally complete diet would increase the hepatic activities of the rate-limiting enzymes for catabolism of threonine, phenylalanine or histidine and prevent the adverse effects of the amino acid on growth when the dietary level of the amino acid is excessive. Week old Leghorn chicks were fed semi-purified diets containing 19% crude protein to which were added no IAA supplement or 10% crude protein from an IAA mix and 5 graded levels of either L-threonine, L-phenylalanine or L-histidine in a 2 x 5 factorial arrangement of treatments. Each amino acid was investigated in a separate experiment involving four replicate pens (seven chicks each) per diet. Weight gains and feed consumptions were determined on the fourteenth day of each experiment. The groups receiving no excess, and 1.0% or 2.0% excesses of amino acids were sampled on the fifteenth day for enzyme activities and plasma amino acid concentrations. Weight gain and/or feed consumption were lower, and plasma concentrations of threonine, phenylalanine and histidine were higher, in chicks receiving 1.5 to 2.0% dietary additions of threonine, phenylalanine, and histidine, respectively, than in chicks that did not receive these amino acids. Chicks that received the amino acids in diets that also contained the IAA supplement had better growth and feed consumption, lower plasma concentrations of threonine, phenylalanine or histidine, higher plasma concentrations of other indispensable amino acids, and higher activities of threonine dehydrogenase, phenylalanine hydroxylase, and histidase than chicks receiving excess amino acids in the absence of IAA supplements. We conclude that the dietary level of protein, not the dietary level of individual amino acids, is the primary determinant of the activity of amino acid degrading enzymes in liver. The increased activity of these enzymes may be the mechanism by which dietary protein alleviates the adverse effects of excessive levels of individual amino acids.  相似文献   

14.
Evolutionary shifts in diet composition are presumably accompanied by simultaneous changes in digestive physiology. The adaptive modulation hypothesis predicts that activities of digestive enzymes should match the relative levels of their substrates in an animal's diet so that available membrane space and synthetic energy are not wasted on enzymes in excess of need. However, previous studies on captive passerine birds showed high intraspecific phenotypic flexibility only in proteases but not in carbohydrases in response to varying diet composition. In this study, we measured the activities of pancreatic, intestinal, and hepatic enzymes in six wild-caught passerine species. We predicted that if the adaptive modulation hypothesis holds during evolutionary shifts in diet composition in birds, then mass-specific activities of digestive enzymes should be correlated positively with the content of their relevant substrates in species' diets. Whereas mass-specific activities of proteases (aminopeptidase-N, trypsin, chymotrypsin, alanine aminotransferase) were not correlated with estimated dietary protein content, mass-specific activities of all studied carbohydrases (amylase, maltase, sucrase) were positively correlated with estimated dietary starch content. We conclude that activities of carbohydrases but not proteases are evolutionarily matched to diet composition in passerine birds. We hypothesize that the need for nitrogen and essential amino acids can prevent the evolution of a low activity of proteases, even in species feeding on a low-protein diet.  相似文献   

15.
Metabolomics assays have recently been used in humans for the identification of biomarkers for dietary assessment and diseases. The application of metabolomics to feline nutrition, however, has been very limited. The objective of this study was to identify how the feline blood metabolome changed in response to dietary macronutrient composition. Twelve adult domestic cats were fed four nutritionally complete diets [control, high-fat (HF), high-protein (HP), high-carbohydrate (HC)] at amounts to maintain ideal body weight and body condition score for 16 days. Overnight fasted plasma samples were collected on day 16 and subjected to liquid/gas chromatography and mass spectrometry. Principal component analysis showed that metabolite profiles of cats fed HP, HF, and HC dietary regimes formed distinct clusters. Cats fed the HP diet had a metabolite profile associated with decreased nucleotide catabolism, but increased amino acid metabolism and ketone bodies, indicating a greater use of protein and fat for energy. Cats fed the HP diet had a significant increase in metabolites associated with gut microbial metabolism. Cats fed the HF diet had metabolites indicative of increased lipid metabolism, including free fatty acids, monoacylglycerols, glycerol-3-phosphate, cholesterol, ketone bodies, and markers of oxidative stress. γ-glutamylleucine, 3-hydroxyisobutyrate, and 3-indoxyl sulfate were identified by random forest analysis to distinguish cats fed the three macronutrient-rich diets. In conclusion, macronutrient-rich diets primarily altered markers of amino acid and lipid metabolism, with little changes in markers of carbohydrate and energy metabolism. Moreover, the HP diet influenced several metabolites originating from gut microbial metabolism.  相似文献   

16.
Rats were fed diets containing 20, 50 and 80% protein for 14 months. The urea excreted by the rats fed diets containing 50 and 80% protein when compared to rats fed diets containing 20% protein increased ca. 2- and 3-fold, respectively, in ca. 2 days; this increase was maintained essentially unchanged through the experimental period. The serum levels of urea increased 2.5- and 4-fold, respectively, in the first days and were also maintained during the experiment. Glutamate dehydrogenase activity of liver remained unchanged. The five urea cycle enzymes increased with respect to the control values. Orotic acid excretion increased as well as orotidylate decarboxylase and orotate phosphoribosyltransferase, but aspartate transcarbamylase did not. The key amino acids involved in the urea and pyrimidine pathways in liver were also measured; aspartic and glutamic acids and citrulline were increased, and ornithine and arginine did not change with the higher protein intake. In general, no differences were observed between animals fed 50 and 80% protein in their diets. Protein synthesis did not increase with the increase of protein content of the diet. Stereological analysis of ultrathin sections showed that the high protein diet induced a significant increment in the volumetric density, numerical density and size of hepatocyte mitochondria. Moreover, the presence of giant mitochondria, a hundred times larger than normal, was also observed in some periportal hepatocytes of rats fed the 80% protein diet.  相似文献   

17.
Abstract— Adult mice were fed standard diets that were enriched with selected amino acids, i.e. 3% methionine, 6% valine, or 8% lysine. These diets caused the following changes in the amino acid pool of the brain measured at 7 and 21 days. The high methionine diet resulted in 50-fold higher levels of methionine and cysteine and somewhat lower levels of serine and glutamine. The valine and lysine-enriched diets also caused 2- to 4-fold increases in valine and lysine contents of brain, respectively. In spite of the large changes in amino acid levels, however, there were essentially no changes in aspartate: α-ketoglutarate, alanine: α-ketoglutarate, ornithine: α-ketoglutarate, methionine: α-ketoglutarate, and the branched chain aminotransferase activities of brain 3, 10, and 21 days after the onset of the dietary regimen. In contrast, these diets produced significant changes in some of these enzyme activities in liver. Changes in liver included a 2-fold increase in ornithine and alanine aminotransferase activities with the methionine-enriched diet. Liver ornithine aminotransferase activity also increased slightly in animals fed the valine-enriched or lysine-enriched diet.  相似文献   

18.
Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are (15)N-enriched relative to their dietary nitrogen sources and this (15)N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ(15)N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ(15)N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally (15)N-enriched relative to their non-protein fraction and to the diet (Δ(15)N>0), with large variations in the Δ(15)N between tissue proteins. Δ(15)N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ(15)N differences between diets differed between tissues. Both between-tissue and between-diet Δ(15)N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ(15)N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ(15)N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source.  相似文献   

19.
为研究人工微颗粒饲料中晶体氨基酸替代鱼粉蛋白对半滑舌鳎(Cynoglossus semilaevis Gnther)稚鱼消化酶和代谢酶活力的影响, 以晶体氨基酸混合物分别替代0%、25%、50%、75%和100%鱼粉蛋白(0%CAA、25%CAA、50%CAA、75%CAA和100%CAA), 在25%替代水平设计棕榈酸甘油酯包被晶体氨基酸混合物组(C-25%CAA), 配制实验微颗粒饲料。每种微颗粒饲料随机投喂三组实验鱼初始体重(0.0940.02) g, 35日龄, 每组实验鱼放养150尾, 养殖周期28d。研究结果表明, 在不包膜条件下, 各处理组的胰蛋白酶活力随替代水平的升高显著下降(P0.05), 且包膜处理组(C-25%CAA)与全鱼粉组无显著差异(P0.05)。肠段胰蛋白酶活力与胰段胰蛋白酶活力比值随氨基酸替代水平的升高显著下降(P0.05), 鱼粉组显著高于75%和100%处理组(P0.05), 但与25%处理组、包膜处理组(C-25%CAA)和50%处理组无显著差异(P0.05)。各处理组淀粉酶活力随替代水平的升高显著上升(P0.05)。亮氨酸氨肽酶(LA)和碱性磷酸酶(AP)活力(肠段与刷状缘)均随替代水平的升高显著下降(P0.05), 包膜处理组(C-25%CAA)与全鱼粉组无显著差异(P0.05)。谷丙转氨酶(GPT/ALT)和谷草转氨酶(GOT/AST)活力随替代水平的升高显著上升(P0.05), 50%、75%和100%处理组显著高于鱼粉组、25%处理组和包膜处理组(C-25%CAA)。研究结果显示, 饲料中晶体氨基酸显著影响了半滑舌鳎稚鱼的消化酶和代谢酶活力, 而且在25%的替代水平下, 与未包膜组相比, 包膜处理组能显著促进半滑舌鳎稚鱼消化系统的发育。    相似文献   

20.
A closed respirometer was used to measure oxygen consumption of the southern catfish Silurus meridionalis fed with six isonitrogenous (48% crude protein) diets replacing 0%, 13%, 26%, 39%, 52% and 65% fish meal (FM) protein by soybean meal (SBM) protein, in order to investigate the effects of dietary soybean protein level (SPL) (replacing FM) on metabolic rates of the southern catfish. The results showed that there were no significant differences in routine metabolism among dietary treatments. Either the total metabolic rate or specific dynamic action (SDA) was positively correlated with assimilated food energy at each diet, respectively (P<0.05). The SDA coefficient (means the energy spent in metabolism per unit of assimilated dietary energy) significantly increased with increasing dietary SPL (P<0.05). Fish fed the diet with 13% SPL had a significantly lower SDA coefficient (0.1528) than fish fed the diet with 52% or 65% SPL (0.1826 or 0.1932) (P<0.05). However, there were no significant differences in SDA coefficient among fish fed the diets with 13%, 26% and 39% SPL (P>0.05). Results of the present study suggested that an imbalance of essential amino acids at higher dietary SPL resulted in more energy channeled into metabolism, and subsequently increased the SDA coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号