首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
目的:观察不同浓度的琥珀酸对大鼠海马CAI区神经元电压依赖性钙通道(voltage-dependent calcium channels,VDCC)流的作用,初步探讨琥珀酸对神经元保护的电生理学基础.方法:采用传统全细胞膜片钳技术和制霉菌素(nystatin)穿孔膜片钳技术观察琥珀酸对海马CAI区神经元VDCC电流的影响.结果:不同浓度的琉角酸(10-6、10-5、10-4、10-3、10-2和10-1mol·L-1)在海马CAI区对低电压激活(low-voltage activated,LVA)钙通道电流未见任何影响,而对高电压激活(high-voltage activated,HVA)钙通道电流的抑制呈浓度依赖性.对照组HVA钙电流为580.051±7.32pA,分别给予10-6、10-5、10-4、10-3、10-2和10-1 mol·L-1的琥珀酸后HVA钙电流依次为563.74±16.65,517.99±15.24,444.66±13.26,405.32±19.11,269.03±9.96和86.41±3.25pA,同对照组相比差异有统计学意义(n=8,P<0.01).结论:琥珀酸能浓度依赖性地抑制HVA钙电流,而对LVA钙电流无影响.由此推测琥珀酸可能通过抑制HVA钙电流减少Ca2+内流而影响海马CAI区神经元的兴奋性,从而抑制癫痫的形成,其脑保护作用可能与此有关.  相似文献   

2.
目的: 研究白细胞介素-6对海马神经元电压依赖离子通道和NMDA电流的影响.方法: 应用全细胞膜片钳技术观察IL-6对电压依赖性钠通道电流(INa),延迟整流性钾通道电流(IK),电压依赖性钙通道电流(ICa),NMDA(N-methyl-D-aspartate)受体通道电流的影响.结果: 50 ng/ml IL-6作用24 h后IK 和ICa明显减小,Cm明显增大.50,500 ng/ml时减小NMDA电流.结论: IL-6通过作用于电压依赖钾通道,钙离子通道及NMDA通道影响神经元功能.  相似文献   

3.
丛红群  岳旺 《生物磁学》2009,(3):444-447
目的:观察不同浓度的琥珀酸对大鼠海马CA1区神经元电压依赖性钙通道(voltage—dependent calcium channels,VDCC)电流的作用,初步探讨琥珀酸对神经元保护的电生理学基础。方法:采用传统全细胞膜片钳技术和制霉菌素(nystatin)穿孔膜片钳技术观察琥珀酸对海马CA1区神经元VDCC电流的影响。结果:不同浓度的琥珀酸(10^-6、10^-5、10^-4、10^-3、10^-2和10^-1mol·L^-1)在海马CA1区对低电压激活(low—voltage activated,LVA)钙通道电流未见任何影响,而对高电压激活(high—voltage activated,HVA)钙通道电流的抑制呈浓度依赖性。对照组HVA钙电流为580.05±17.32pA,分别给予10^-6、10^-5、10^-4、10^-3、10^-2和10^-1mol·L^-1。的琥珀酸后,HVA钙电流依次为563.74±16.65,517.99±15.24,444.66±13.26,405.32±19.11,269.03±9.96和86.41±3.25pA,同对照组相比差异有统计学意义(n=8,P〈0.01)。结论:琥珀酸能浓度依赖性地抑制HVA钙电流,而对LVA钙电流无影响。由此推测琥珀酸可能通过抑制HVA钙电流减少Ca^2+内流而影响海马CA1区神经元的兴奋性,从而抑制癫痫的形成,其脑保护作用可能与此有关。  相似文献   

4.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠15 min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高.  相似文献   

5.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠 15min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高  相似文献   

6.
目的 :研究白细胞介素 6对海马神经元电压依赖离子通道和NMDA电流的影响。方法 :应用全细胞膜片钳技术观察IL 6对电压依赖性钠通道电流 (INa) ,延迟整流性钾通道电流 (IK) ,电压依赖性钙通道电流 (ICa) ,NMDA(N methyl D aspartate)受体通道电流的影响。结果 :5 0ng/mlIL 6作用 2 4h后IK和ICa明显减小 ,Cm明显增大。 5 0 ,5 0 0ng/ml时减小NMDA电流。结论 :IL 6通过作用于电压依赖钾通道 ,钙离子通道及NMDA通道影响神经元功能。  相似文献   

7.
运用全细胞膜片钳技术研究二氧化硫衍生物对大鼠背根神经元瞬间外向钾电流(IA和ID)和延迟整流钾电流(IK)的影响。结果发现二氧化硫衍生物剂量依赖性地增大钾通道的电导,电压依赖性地增大钾电流的幅度,且这种增大作用部分可逆。二氧化硫非常显著地使延迟整流钾电流的激活过程向超极化方向移动,使瞬间外向钾电流的失活过程向去极化方向移动。10μmol/L二氧化硫衍生物作用前后,延迟整流钾电流的半数激活电压分别是(20.3±2.1)mV和(15.0±1.5)mV;IA和ID的半数失活电压分别朝去极化方向移动了6mV和7.4mV。这些结果表明二氧化硫改变了钾通道的特性,改变了神经元的兴奋性。  相似文献   

8.
大鼠海马神经元膜离子通道随培养时间变化的特点   总被引:8,自引:2,他引:6  
目的和方法:采用膜片钳全细胞记录技术观察新生大鼠海马神经元体外分散培养过程中,基本离子通道和膜参数随培养天数延长而变化的规律.结果:在7 d,14 d和21 d时电压依赖性钠电流(Voltage-dependent Na cur-rent,ⅠNa)和延迟整流性钾电流(Delayed rectifier K current,Ⅰk)的幅度无显著性差异.电压依赖性钙电流(Voltage-dependent Ca2 current,ⅠCa)和ⅠCa密度则持续增大,进一步研究表明,L型钙通道(L-type voltage-dependent Ca2 channel,L-VDCC)的增加是其主要原因.NMDA诱发电流随培养时间延长而明显增加.结论:钙通道和NMDA受体所介导的Ca2 内流是神经元易感于衰老和死亡的重要机制之一.  相似文献   

9.
目的:探讨新生大鼠海马神经干细胞体外培养分化后的神经元样细胞钾电流的变化.方法:神经干细胞体外扩增培养并传代后,撤除有丝分裂原并加血清诱导分化,应用全细胞电压钳技术检测分化后培养1 d、7 d、14 d、21 d细胞的电压依赖性钾电流.结果:分化后培养1 d的细胞,未检测出钾电流;分化后培养7 d、14 d、21 d的细胞,在 50 mV电压水平下的钾电流幅值分别为(18.077±2.789)pA/pF, (13.099±2.742)pA/pF, (34.045±8.067)pA/pF.该电流为两种电流的混合,分别能被TEA和4-AP所阻断,可能为缓慢失活的延迟整流钾电流(IK)和快速失活的瞬时外向钾电流(IA).结论:新生大鼠海马神经干细胞诱导分化后,随着体外培养时间的延长,钾离子通道的功能逐渐成熟.  相似文献   

10.
皮质酮对体外培养的海马神经元延迟整流钾电流的影响   总被引:2,自引:0,他引:2  
目的:探讨应激激素皮质酮对海马神经元延迟整流钾电流的影响。方法:膜片钳全细胞记录测量原代培养大鼠海马神经元膜的钾离子电流。结果:在皮质酮的作用下,海马神经元膜的钾离子电流幅度明显下调,激活阈电位升高。结论:过量皮质酮激素可能通过影响延迟整流钾通道损伤海马神经元。  相似文献   

11.
Cai Q  Zhu Z  Li H  Fan X  Jia N  Bai Z  Song L  Li X  Liu J 《Life sciences》2007,80(7):681-689
Prenatal stress is known to cause neuronal loss and oxidative damage in the hippocampus of offspring rats. To further understand the mechanisms, the present study was undertaken to investigate the effects of prenatal stress on the kinetic properties of high-voltage-activated (HVA) Ca(2+) and K(+) channels in freshly isolated hippocampal CA3 pyramidal neurons of offspring rats. Pregnant rats in the prenatal stress group were exposed to restraint stress on days 14-20 of pregnancy three times daily for 45 min. The patch clamp technique was employed to record HVA Ca(2+) and K(+) channel currents. Prenatal stress significantly increased HVA Ca(2+) channel disturbance including the maximal average HVA calcium peak current amplitude (-576.52+/-7.03 pA in control group and -702.05+/-6.82 pA in prenatal stress group, p<0.01), the maximal average HVA Ca(2+) current density (-40.89+/-0.31 pA/pF in control group and -49.44+/-0.37 pA/pF in prenatal stress group, p<0.01), and the maximal average integral current of the HVA Ca(2+) channel (106.81+/-4.20 nA ms in control group and 133.49+/-4.59 nA ms in prenatal stress group, p<0.01). The current-voltage relationship and conductance--voltage relationship of HVA Ca(2+) channels and potassium channels in offspring CA3 neurons were not affected by prenatal stress. These data suggest that exposure of animals to stressful experience during pregnancy can exert effects on calcium ion channels of offspring hippocampal neurons and that the calcium channel disturbance may play a role in prenatal stress-induced neuronal loss and oxidative damage in offspring brain.  相似文献   

12.
Whole-cell patch clamp and polarographic oxygen partial pressure (pO2) measurements were used to establish the sensitivity of high-voltage-activated (HVA) Ca2+ channel subtypes of CA1 hippocampal neurons of rats to hypoxic conditions. Decrease of pO2 to 15-30 mm Hg induced a potentiation of HVA Ca2+ currents by 94%. Using selective blockers of N- and L-types of calcium channels, we found that inhibition of L-type channels decreased the effect by 54%, whereas N-type blocker attenuated the effect by 30%. Taking into account the ratio of currents mediated by these channel subtypes in CA1 hippocampal neurons, we concluded that both types of HVA Ca2+ channels are sensitive to hypoxia, however, L-type was about 3.5 times more sensitive to oxygen reduction.  相似文献   

13.
The purpose of the present study was to characterize the expressions of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CaMK-II), total CaMK-II, and L-type Ca(2+) channel in offspring hippocampus that was induced by prenatal restraint stress. Pregnant rats were divided into two groups: the control group and the prenatal stress (PNS) group. Pregnant rats in the PNS group were exposed to restraint stress on day 14-20 of pregnancy three times daily for 45 min. Adult offspring rats were used in this study. The results demonstrated that prenatal restraint stress induced a significant increase in the expression of p-CaMK-II, total CaMK-II, and L-Ca(2+) channel by western blot analysis in offspring hippocampus. The immunohistochemistry results revealed that PNS increased the expressions of CaMK-II and L-Ca(2+) channel in the hippocampal CA3 of offspring rats. These data suggest that PNS can have long-term neuronal effects within hippocampal structure involved in the feedback mechanisms of the hypothalamo-pituitary-adrenal axis.  相似文献   

14.
Large and protracted elevations of intracellular [Ca(2+)] and [Na(+)] play a crucial role in neuronal injury in ischemic conditions. In addition to excessive glutamate receptor activation, other ion channels may contribute to disruption of intracellular ionic homeostasis. During episodes of ischemia, extracellular [Ca(2+)] falls significantly. Here we report the emergence of an inward current in hippocampal CA1 pyramidal neurons in acute brain slices from adult mice upon reduction/removal of [Ca(2+)](e). The magnitude of the current was 100-300pA at -65mV holding potential, depending on intracellular constituents. The current was accompanied by intense neuronal discharge, observed in both whole-cell and cell-attached patch configurations. Sustained currents and increased neuronal firing rates were both reversed by restoration of physiological levels of [Ca(2+)](e), or by application of spermine (1mM). The amplitudes of the sustained currents were strongly reduced by raising intracellular [Mg(2+)], but not by extracellular [Mg(2+)] increases. Elevated intracellular ATP also reduced the current. This conductance is similar in several respects to the "calcium-sensing, non-selective cation current" (csNSC), previously described in cultured mouse hippocampal neurons of embryonic origin. The dependence on intracellular [ATP] and [Mg(2+)] shown here, suggests a possible role for this current in disruption of ionic homeostasis during metabolic stress that accompanies excessive neuronal stimulation.  相似文献   

15.
The properties of the gating currents (nonlinear charge movements) of human cardiac L-type Ca2- channels and their relationship to the activation of the Ca2+ channel (ionic) currents were studied using a mammalian expression system. Cloned human cardiac alpha1 + rabbit alpha 2 subunits or human cardiac alpha 1 + rabbit alpha 2 + human beta 3 subunits were transiently expressed in HEK293 cells. The maximum Ca2+ current density increased from -3.9 +/- 0.9 pA/pF for the alpha 1 + alpha 2 subunits to -11.6 +/- 2.2 pA/pF for alpha 1 + alpha 2 + beta 3 subunits. Calcium channel gating currents were recorded after the addition of 5 mM Co2+, using a -P/5 protocol. The maximum nonlinear charge movement (Qmax) increased from 2.5 +/- 0.3 nC/muF for alpha 1 + alpha 2 subunit to 12.1 +/- 0.3 nC/muF for alpha 1 + alpha 2 + beta 3 subunit expression. The QON was equal to the QOFF for both subunit combinations. The QON-Vm data were fit by a sum of two Boltzmann expressions and ranged over more negative potentials, as compared with the voltage dependence for activation of the Ca2+ conductance. We conclude that 1) the beta subunit increases the number of functional alpha 1 subunits expressed in the plasma membrane of these cells and 2) the voltage-dependent activation of the human cardiac L-type calcium channel involves the movements of at least two nonidentical and functionally distinct gating structures.  相似文献   

16.
The peroxynitrite free radical (ONOO?) modulation of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) was investigated in rat CA1 pyramidal neurons using the whole-cell patch clamp technique. SIN-1(3-morpholino-sydnonimine), which can lead the simultaneous generation of superoxide anion and nitric oxide, and then form the highly reactive species ONOO?, induced dose-dependent inhibition in amplitudes of both mEPSCs and sEPSCs. The SIN-1 action on mEPSC amplitude was completely blocked by U0126, a selective MEK inhibitor, suggesting that MEK contributed to the action of ONOO? on mEPSCs. The effect of SIN-1 was completely occluded either in the presence of the calcium chelator EGTA or the non-selective calcium channel antagonist Cd2+. Furthermore, the application of nifedipine (20 μM), the L-type calcium channel blocker, had no effect on the ONOO?-induced decrease in mEPSC amplitude, excluding a role for L-type voltage-gated Ca2+ channels in this process. SIN-1 inhibited the frequency of sEPSCs but had no effect on mEPSC frequency, which suggested a presynaptic action potential-dependent the action of ONOO? at CA1 pyramidal neuron synapses. The best-known glutamatergic input to CA1 pyramidal neurons is via Schaffer collaterals from CA3 area. However, no changes were observed in slices treated with SIN-1 on the spontaneous firing rates of CA3 pyramidal neurons. These findings suggested that SIN-1 inhibited glutamatergic synaptic transmission of CA1 pyramidal neurons by a postsynaptic non-L-type voltage gated calcium channel-dependent mechanism.  相似文献   

17.
W M Gao  B Wang  X Y Zhou 《Radiation research》1999,152(3):265-272
Pregnant adult Wistar rats were randomly divided into four groups. Three of these groups were irradiated with beta rays by a single intraperitoneal injection of tritiated water ((3)H(2)O) administered on the 13th day of gestation. The doses absorbed by their offspring were estimated to be 4.6, 9.2 and 27.3 cGy. The influence of radiation on the postnatal learning ability and memory behavior and on brain development of the offspring was investigated. The number of pyramidal cells (in areas CA1, CA2, CA3 and CA4) and neurons in the hippocampus of the offspring was also measured. In addition, the Ca(++) conductance of hippocampal pyramidal cells cultured in vitro was observed. The results showed that an exposure to 4.6 cGy could prolong avoidance response time significantly and decrease the number of hippocampal pyramidal cells in the CA1 area compared to controls. An exposure to 9.2 cGy significantly decreased the establishment of conditioned reflexes and the number of hippocampal pyramidal cells in the CA3 area. This exposure also induced the degeneration and malformation of hippocampal neurons cultured in vitro, in addition to decreasing the number of hippocampal neurons observed on each culture day. A dose of 27.3 cGy significantly decreased brain and body weights and the maximum electric conductance of Ca(++) in hippocampal pyramidal neurons. In general, dose-dependent effects were observed for most of the parameters assessed in the present study. Possible mechanisms are discussed.  相似文献   

18.
Protease-activated receptor-1 (PAR1) is activated by a number of serine proteases, including plasmin. Both PAR1 and plasminogen, the precursor of plasmin, are expressed in the central nervous system. In this study we examined the effects of plasmin in astrocyte and neuronal cultures as well as in hippocampal slices. We find that plasmin evokes an increase in both phosphoinositide hydrolysis (EC(50) 64 nm) and Fura-2/AM fluorescence (195 +/- 6.7% above base line, EC(50) 65 nm) in cortical cultured murine astrocytes. Plasmin also activates extracellular signal-regulated kinase (ERK1/2) within cultured astrocytes. The plasmin-induced rise in intracellular Ca(2+) concentration ([Ca(2+)](i)) and the increase in phospho-ERK1/2 levels were diminished in PAR1(-/-) astrocytes and were blocked by 1 microm BMS-200261, a selective PAR1 antagonist. However, plasmin had no detectable effect on ERK1/2 or [Ca(2+)](i) signaling in primary cultured hippocampal neurons or in CA1 pyramidal cells in hippocampal slices. Plasmin (100-200 nm) application potentiated the N-methyl-D-aspartate (NMDA) receptor-dependent component of miniature excitatory postsynaptic currents recorded from CA1 pyramidal neurons but had no effect on alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate- or gamma-aminobutyric acid receptor-mediated synaptic currents. Plasmin also increased NMDA-induced whole cell receptor currents recorded from CA1 pyramidal cells (2.5 +/- 0.3-fold potentiation over control). This effect was blocked by BMS-200261 (1 microm; 1.02 +/- 0.09-fold potentiation over control). These data suggest that plasmin may serve as an endogenous PAR1 activator that can increase [Ca(2+)](i) in astrocytes and potentiate NMDA receptor synaptic currents in CA1 pyramidal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号